대구한의대학교 향산도서관

상세정보

부가기능

RGBD Pipeline for Indoor Scene Reconstruction and Understanding

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항RGBD Pipeline for Indoor Scene Reconstruction and Understanding.
개인저자Halber, Maciej Stanislaw.
단체저자명Princeton University. Computer Science.
발행사항[S.l.]: Princeton University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항139 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687931979
학위논문주기Thesis (Ph.D.)--Princeton University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Funkhouser, Thomas A.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약In this work, we consider the problem of reconstructing a 3D model from a sequence of color and depth frames. Generating such a model has many important applications, ranging from the entertainment industry to real estate. However, transforming the RGBD frames into high-quality 3D models is a challenging problem, especially if additional semantic information is required. In this document, we introduce three projects, which implement various stages of a robust RGBD processing pipeline.First, we consider the challenges arising during the RGBD data capture process. While the depth cameras are providing dense, per-pixel depth measurements, there is a non-trivial error associated with the resulting data. We discuss the depth generation problem and propose an error reduction technique based on estimating an image-space undistortion field. We describe the capture process of the data required for the generation of such an undistortion field. We showcase how correcting the depth measurements improves the reconstruction quality.Second, we address the problem of registering RGBD frames over a long video sequence into a globally consistent 3D model. We propose a ``fine-to-coarse'' global registration algorithm that leverages robust registrations at finer scales to seed detection and enforcement of geometrical constraints, modeled as planar structures, at coarser scales. To test global registration algorithms, we provide a benchmark with 10,401 manually-clicked point correspondences in 25 scenes from the SUN3D dataset. We find that our fine-to-coarse algorithm registers long RGBD sequences better than previous methods.Last, we show how repeated scans of the same space can be used to establish associations between the different observations. Specifically, we consider a situation where 3D scans are acquired repeatedly at sparse time intervals. We develop an algorithm that analyzes these "rescans" and builds a temporal model of a scene with semantic instance information. The proposed algorithm operates inductively by using a temporal model resulting from past observations to infer instance segmentation of a new scan. The temporal model is continuously updated to reflect the changes that occur in the scene over time, providing object associations across time. The algorithm outperforms alternate approaches based on state-of-the-art networks for semantic instance segmentation.
일반주제명Computer science.
Computer engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼