대구한의대학교 향산도서관

상세정보

부가기능

Exploration of Gait Variability and Local Dynamic Stability of Foot and Trunk in Human Walking Using Accelerometers

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Exploration of Gait Variability and Local Dynamic Stability of Foot and Trunk in Human Walking Using Accelerometers.
개인저자Chavanaves, Sakdapong.
단체저자명The Pennsylvania State University. Kinesiology.
발행사항[S.l.]: The Pennsylvania State University., 2017.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2017.
형태사항209 p.
기본자료 저록Dissertations Abstracts International 81-01B.
Dissertation Abstract International
ISBN9781392335055
학위논문주기Thesis (Ph.D.)--The Pennsylvania State University, 2017.
일반주기 Source: Dissertations Abstracts International, Volume: 81-01, Section: B.
Publisher info.: Dissertation/Thesis.
Advisor: Eckhardt, Robert B.
요약There are over 7 million fall injuries in the United States across all ages annually. Previous studies have shown that falls occurred most frequently during walking. To identify individuals at high risk of falling, we need objective measures which are reliable, valid and easily applicable to quantify fall risk. Gait variability and local dynamic instability have been shown to be able to distinguish healthy gait and fall-prone gait. This dissertation explores gait variability and local dynamic stability of foot and trunk in human walking using accelerometers. Three studies were conducted to examine: (1) how the intra-session and inter-session reliability of gait variability and local dynamic stability was affected by the number of strides analyzed, walking conditions and calculation methods, (2) the effect of walking speed on gait variability and local dynamic stability and (3) how gait variability and local dynamic stability differs between left and right foot under different walking conditions.In all three studies, the gait variability investigated were stride time variability and the variability of foot and trunk accelerations. The local dynamic instability was quantified using short-term and long-term local divergence exponents. In Study 1 and 3, four different walking conditions at preferred walking speed were examined, namely treadmill, overground on a rectangular path, clockwise and counterclockwise on a circular path. In Study 2, five different walking speeds at 60%, 80%, 100%, 120% and 140% of preferred walking speed on a treadmill were investigated.In Study 1, the results suggest that the optimal reliability of the variability of acceleration and short-term local divergence exponents may be achieved with at least 75 strides. The intrasession reliability may be improved by research design that minimizes the variability in experimental settings and equipments. Overall, the reliability was better when gait variability and local divergence exponents were calculated using foot accelerations compared to trunk accelerations. Gait variability and long-term local divergence exponents were more consistent in counter-clockwise than clockwise walking, suggesting that these variables may be linked to turning preference and limb dominance. In Study 2, the results revealed that stride time variability decreased with walking speed. The variability of acceleration and long-term local divergence exponents increased with walking speed. The effect of walking speed on short-term local divergence exponents varied depending on calculation methods. Collectively, these results suggest that future studies should control walking speed when these variables are compared between different groups or conditions. In Study 3, the variability of acceleration was larger for the left foot compared to the right foot in all walking conditions except in the medial-lateral direction, implying that motor lateralization may influence the control of lower limbs motion. The short-term local divergence exponents were not different between left foot and right foot in all walking conditions except in the medial-lateral direction, suggesting that motor lateralization may not affect the control of gait stability and that gait variability and local dynamic instability are different quantities which reflect different aspect of gait characteristics.
일반주제명Biomedical engineering.
Kinesiology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼