대구한의대학교 향산도서관

상세정보

부가기능

Local and Adaptive Image-to-Image Learning and Inference

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Local and Adaptive Image-to-Image Learning and Inference.
개인저자Shelhamer, Evan Gerard.
단체저자명University of California, Berkeley. Computer Science.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항95 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781085792981
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Darrell, Trevor.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약Much of the recent progress on visual processing has been driven by deep learning and its bicameral heart of composition and end-to-end optimization. The machinery of convolutional networks is now ubiquitous. Its diffusion however was neither instantaneous nor effortless. To advance across the frontiers of vision, deep learning had to be equipped with the right structures: the true, intrinsic structures of the visual world.This thesis incorporates locality and scale structure into end-to-end learning for visual recognition. Locality structure is key for addressing image-to-image tasks that take image inputs and return image outputs. Scale structure is ubiquitous, and optimizing over it learns the degree of locality for the task and data. Alongside structure, this thesis examines adaptive computation to help cope with the variability of rich image-to-image prediction problems. These directions are studied through the lens of local recognition tasks that require inference of what and where.Fully convolutional networks decompose image-to-image learning and inference into local scopes. Factorizing these scopes into structured and free-form parts, and learning both, optimizes their size and shape to control the degree of locality. Adaptive computation across time, computing layers according to their rate of change, exploits temporal locality to improve the efficiency of video processing. Adaptive computation across tasks, extracting a latent representation of local supervision, transcends locality to non-locally guide and correct inference. Locality is the defining principle of our fully convolutional networks. Adaptivity equips our networks to more fully engage with the vastness and variety of vision.
일반주제명Artificial intelligence.
Computer science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼