대구한의대학교 향산도서관

상세정보

부가기능

Planetary Plasma Modeling and Ion Escape

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Planetary Plasma Modeling and Ion Escape.
개인저자Egan, H. L.
단체저자명University of Colorado at Boulder. Astrophysical and Planetary Sciences.
발행사항[S.l.]: University of Colorado at Boulder., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항182 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088300947
학위논문주기Thesis (Ph.D.)--University of Colorado at Boulder, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Brain, David.
이용제한사항This item must not be sold to any third party vendors.
요약In this thesis I use global plasma simulations to explore the star-planet interaction for Mars and Mars-like exoplanets, with an emphasis on the relationship to ion escape.I compare the results of five global Martian plasma models run with identical input conditions to each other and corresponding MAVEN data, in order to assess the effect of the different physical assumptions and numerical implementations. I show that no one model outperforms all others in every data comparison, necessitating the careful selection of model for the type of physics one is analyzing. There are clear morphological differences in ion behavior in the tail and southern hemisphere, as well as in the location of various plasma boundaries.I then apply a hybrid plasma model to the study of a generic Mars-like planet in the habitable zone of a typical M-dwarf star. I systematically vary the stellar input conditions and examine the changing plasma environment and ion escape. Both ion loss morphology and overall rates vary significantly, and in cases where the stellar wind pressure was increased, the ion loss begins to be diffusion or production limited. A quasi-parallel interplanetary magnetic field drives asymmetrically draped field lines and correspondingly asymmetric ion escape.I use the same hybrid model to explore the effects of intrinsic planetary magnetic field strength on ion outflow, for both current Mars and a Mars-like exoplanet. The presence of an intrinsic magnetic field enhances escape to a certain point before beginning to inhibit it, depending on the polar cone angle and the magnetic standoff distance. I argue that ion escape reflects a balance between the competing effects of magnetic shielding at the equator and enhanced escape at the poles.
일반주제명Astrophysics.
Planetology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼