대구한의대학교 향산도서관

상세정보

부가기능

Transient Frequency Analysis and Distributed Synthesis for Power Networks

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Transient Frequency Analysis and Distributed Synthesis for Power Networks.
개인저자Zhang, Yifu.
단체저자명University of California, San Diego. Mechanical and Aerospace Engineering.
발행사항[S.l.]: University of California, San Diego., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항166 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088326831
학위논문주기Thesis (Ph.D.)--University of California, San Diego, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Cortes, Jorge.
이용제한사항This item must not be sold to any third party vendors.
요약Electric power systems safety is a fundamental aspect of the operation and management of the grid. In order to maintain safety, the power system is operated around a nominal frequency. In fact, large frequency fluctuations can trigger generator relay-protection mechanisms and load shedding, which may further jeopardize network integrity, leading to cascading failures. Without appropriate estimations on the possible consequences resulting from contingency, operational architectures, and control safeguards in place, the likelihood of such events is not negligible, given that the high penetration of non-rotational renewable resources provides less inertia, possibly inducing higher frequency excursions. These observations motivate us in this thesis to develop approximation and control schemes to efficiently estimate the transient-state evolution subject to disturbances and contingencies and further actively mitigate undesired transient frequency deviations.This thesis first develops methods to efficiently compute the set of disturbances on a power network that do not tip the frequency of each bus and the power flow in each transmission line beyond their respective bounds. For a linearized power network model, we propose a sampling method to provide superset and subset approximations with a desired accuracy of the set of feasible disturbances. We also introduce an error metric to measure the approximation gap and design an algorithm that is able to reduce its value without impacting the complexity of the resulting set approximations.As a natural follow-up to our on approximating feasible disturbances, we seek to further regulate transient frequency via novel control schemes. With regard to this, this thesis proposes three control strategies that all achieve local stabilization of power networks characterized by nonlinear swing equations and, at the same time, delimit the transient frequencies of targeted buses to a desired safe interval. To handle the coordination of large numbers of resources in an adaptive and scalable fashion, all three controllers can be implemented in an either partially or fully distributed fashion. Specifically, we synthesize the first transient frequency controller by having it satisfy a transient frequency constraint and an asymptotic stability constraint. Benefitting from its structural simplicity, the controller can be implemented in a distributed fashion by merely allowing each controlled bus physically measure the states of neighbors. To reduce the control effort, the second MPC-based controller enables control command cooperation by communication
일반주제명Engineering.
Electricity distribution.
Electric power.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼