대구한의대학교 향산도서관

상세정보

부가기능

Regulation of Surface Attachment by a Suite of Two-Component Systems and Transcription Factors in Caulobacter Crescentus

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Regulation of Surface Attachment by a Suite of Two-Component Systems and Transcription Factors in Caulobacter Crescentus.
개인저자Reyes Ruiz, Leila Marie.
단체저자명The University of Chicago. Genetics, Genomics, and Systems Biology.
발행사항[S.l.]: The University of Chicago., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항203 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085794978
학위논문주기Thesis (Ph.D.)--The University of Chicago, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Crosson, Sean.
이용제한사항This item must not be sold to any third party vendors.
요약Two-component systems (TCS) are broadly employed by bacteria to appropriately sense and respond to stimuli. TCS are typically thought of as insulated, linear pathways. However, emerging data provide evidence that complex cellular decisions requiring integration of multiple signals can use interconnected networks of TCS proteins. Many bacteria utilize TCS to regulate their transition to a surface-associated community lifestyle, known as a biofilm. While a surface-associated lifestyle can have advantages, shifts in the physiochemical state of the environment may result in conditions in which attachment has a negative fitness impact. Therefore, bacteria employ numerous mechanisms to control the complex surface attachment decision.The Alphaproteobacterium Caulobacter crescentus secretes a polar polysaccharide adhesin known as the holdfast, which enables permanent attachment to surfaces. The small protein, HfiA, is a potent developmental inhibitor of holdfast synthesis. Multiple environmental cues influence expression of hfiA, but mechanisms of hfiA regulation remain largely undefined. The TCS LovK/LovR has previously been shown to repress hfiA transcription, which results in an increase in holdfast development. However, LovR lacks a DNA-binding output domain, suggesting that regulation of hfiA transcription by LovK/LovR is indirect. Through a forward genetic selection, I sought to identify other regulatory proteins that play a role in LovK/LovR-dependent regulation of hfiA transcription. I have discovered a multi-gene network encoding a suite of two-component system (TCS) proteins and transcription factors that coordinately control hfiA transcription, holdfast development and surface adhesion. The hybrid HWE-family histidine kinase, SkaH, is central among these regulators and forms heteromeric complexes with the kinases, LovK and SpdS. The response regulator SpdR indirectly inhibits hfiA expression by activating two XRE-family transcription factors that directly bind the hfiA promoter to repress its transcription. My thesis provides evidence for a model in which a consortium of environmental sensors and transcriptional regulators integrate environmental cues at the hfiA promoter to control the attachment decision.
일반주제명Microbiology.
Genetics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼