대구한의대학교 향산도서관

상세정보

부가기능

Advancing the Multi-Solver Paradigm for Overset CFD toward Heterogeneous Architectures

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Advancing the Multi-Solver Paradigm for Overset CFD toward Heterogeneous Architectures.
개인저자Jude, Dylan Philip Nordblom.
단체저자명University of Maryland, College Park. Aerospace Engineering.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항207 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781687915245
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Baeder, James.
이용제한사항This item must not be sold to any third party vendors.
요약A multi-solver, overset, computational fluid dynamics framework is developed for efficient, large-scale simulation of rotorcraft problems. Two primary features distinguish the developed framework from the current state of the art. First, the framework is designed for heterogeneous compute architectures, making use of both traditional codes run on the Central Processing Unit (CPU) as well as codes run on the Graphics Processing Unit (GPU). Second, a framework-level implementation of the Generalized Minimal Residual linear solver is used to consider all meshes from all solvers in a single linear system. The developed GPU flow solver and framework are validated against conventional implementations, achieving a 5.35x speedup for a single GPU compared to 24 CPU cores. Similarly, the overset linear solver is compared to traditional techniques, demonstrating the same convergence order can be achieved using as few as half the number of iterations. Applications of the developed methods are organized into two chapters. First, the heterogeneous, overset framework is applied to a notional helicopter configuration based on the ROBIN wind tunnel experiments. A tail rotor and hub are added to create a challenging case representative of a realistic, full-rotorcraft simulation. Interactional aerodynamics between the different components are reviewed in detail. The second application chapter focuses on performance of the overset linear solver for unsteady applications. The GPU solver is used along with an unstructured code to simulate laminar flow over a sphere as well as laminar coaxial rotors designed for a Mars helicopter. In all results, the overset linear solver out-performs the traditional, de-coupled approach. Conclusions drawn from both the full-rotorcraft and overset linear solver simulations can have a significant impact on improving modeling of complex rotorcraft aerodynamics.
일반주제명Aerospace engineering.
Fluid mechanics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼