대구한의대학교 향산도서관

상세정보

부가기능

Structural and Intrinsic Disorder in the Regulation of Protein-protein Interactions

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Structural and Intrinsic Disorder in the Regulation of Protein-protein Interactions.
개인저자Fealey, Michael E.
단체저자명University of Minnesota. Biochemistry, Molecular Bio, and Biophysics.
발행사항[S.l.]: University of Minnesota., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항197 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085723213
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Thomas, David D.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약This thesis applied spectroscopy and molecular dynamics simulation to study the structural biology of actin-binding domains (ABDs) from the spectrin superfamily of proteins as well as an intrinsically disordered region (IDR) of an integral membrane protein called synaptotagmin 1. In the former case, the structural hypothesis being tested was that actin-binding domains exist in distinct conformational states that are either permissive to or inhibitory towards binding of actin filaments. This question was probed using pulsed-EPR, which measured distances between the calponin homology (CH) domains that make up the ABD as proxy for conformation in the presence or absence of actin or with and without disease-causing mutation. The initial hypothesis of a closed compact state being unable to bind actin and an open extended state being binding-competent was largely supported by the data. However, the hypothesis was ultimately refined to conclude that an "open" state is likely to still be a fairly collapsed structure that is dynamically disordered. With this model, future efforts will be able use the model to look for small molecules that perturb the conformational equilibrium of ABDs harboring disease-causing mutations in potentially therapeutically efficacious ways. Moreover, the model can be tested in other ABDs of the protein superfamily to assess similarities and differences in mechanism.In the case of the intrinsically disordered region of synaptotagmin 1, it was hypothesized that a post-translational modification, specifically phosphorylation of a threonine residue, caused a structural change in the IDR that then results in a change in neurotransmitter release. This hypothesis was also tested with spectroscopic methods, mainly FRET and circular dichroism, but also with molecular dynamics. It was found that mimicking the low dielectric environment of the membrane with co-solvents in solution and artificially in silico caused the synaptotagmin 1 IDR to fold into helical structure. The post-translational modification, however, was found to interfere with the formation of helical structure, providing a still incomplete but novel molecular explanation for the effect it has on potentiation of neurotransmitter release observed in vivo. At the very least, the structural model provides a working hypothesis that can be further explored in further work.
일반주제명Biochemistry.
Biophysics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼