대구한의대학교 향산도서관

상세정보

부가기능

Programming Synthetic Feedback Using Designer Proteins

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Programming Synthetic Feedback Using Designer Proteins.
개인저자Ng, Andrew.
단체저자명University of California, San Francisco. Bioengineering.
발행사항[S.l.]: University of California, San Francisco., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항123 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085650557
학위논문주기Thesis (Ph.D.)--University of California, San Francisco, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: El-Samad, Hana
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약Feedback plays a key role in nearly all biological processes, from the cell cycle to chemotaxis. Despite the clear importance of feedback to cells, synthetic biologists have yet to invent a truly modular device for performing feedback on proteins. Existing methods for performing feedback have been designed for control of specific pathways or molecules, with limited tunability. To this end, we leveraged recent advancements in protein design to design a completely de novo, static, five-helix "Cage" with a single interface that can interact either intra-molecularly with a terminal "Latch" helix or inter-molecularly with a peptide "Key". Encoded on the Latch are functional motifs for binding, degradation, or nuclear export that function only when the Key displaces the Latch from the Cage. Using one of these designer switches, degronLOCKR, we were able to regulate degradation of a variety of cargoes, including transcription factors, dCas9, and kinases. The modularity afforded by the de novo designed LOCKR switches offers distinct advantages over previous efforts to engineer cellular circuits, which have been limited to repurposing modular protein domains from nature. Leveraging the plug-and play nature of degronLOCKR, we implemented feedback control on both endogenous signaling pathways and synthetic gene circuits. We first generated synthetic negative feedback in the yeast mating pathway via fusion of degronLOCKR to endogenous signaling molecules, illustrating the simplicity with which this strategy can be used to rewire complex endogenous pathways. We next benchmarked degronLOCKR-mediated feedback control on a synthetic gene circuit to quantify its feedback capabilities and operational range. The designer nature of degronLOCKR enables simple and rational modifications to tune feedback behavior in both the synthetic circuit and the mating pathway. De novo protein design promises to greatly expand the realm of possibility of synthetic biology with a toolkit of composable, modular, and tunable parts that are also bio-orthogonal.
일반주제명Bioengineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼