대구한의대학교 향산도서관

상세정보

부가기능

Toward Realistic Modeling of Catalytic Surfaces: From First Principles to Machine Learning

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Toward Realistic Modeling of Catalytic Surfaces: From First Principles to Machine Learning.
개인저자Wexler, Robert B.
단체저자명University of Pennsylvania. Chemistry.
발행사항[S.l.]: University of Pennsylvania., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항241 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088365595
학위논문주기Thesis (Ph.D.)--University of Pennsylvania, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Rappe, Andrew M.
이용제한사항This item must not be sold to any third party vendors.
요약Computational catalyst design has the potential to revolutionize the energy and chemical industries by alleviating their reliance on fossil fuels, precious metals, and toxic elements. Despite recent advances in understanding catalytic trends, e.g. the chemisorption scaling relations and the d-band model, the description of catalytic surfaces has, for the most part, been far from realistic. It is well known that surfaces can undergo reconstruction where the structure and composition of the surface differs from that of the bulk and the nature of this reconstruction depends on the temperature, pressure, and chemical potentials of the elements in the system. Since catalytic transformations, i.e. bond breaking and formation, occur at the surface, an accurate picture of surface structure and composition is vital. In this thesis, we apply and develop state-of-the-art computational methods for studying the reconstruction of catalytic surfaces and investigate the effect of surface reconstruction on catalysis. First, we show using ab initio thermodynamics that the surfaces of nickel phosphide catalysts for the hydrogen evolution reaction (HER) are P-enriched, which was not previously considered in computational studies. Building on this discovery, we reevaluate the HER mechanism on Ni2P and Ni5P4 and find that P sites are the key to their catalytic activities. While the P sites on Ni2P are highly active toward the HER, they are not stable at conditions suitable for commercial electrolyzers. Under these conditions, the stable surface of Ni2P binds hydrogen too strongly at Ni sites. We demonstrate that these Ni sites can be activated by doping the surface of Ni2P with S, Se, and Te. Additionally, using tree-based machine learning methods, we reveal that nonmetal dopants induce a chemical pressure-like effect on the Ni sites, changing their reactivity through compression and expansion. Finally, we develop a software package for ab initio grand canonical Monte Carlo that automatically predicts surface phase diagrams. The results presented herein provide strong motivation and a methodological foundation for moving toward more realistic modeling of heterogeneous catalysts.
일반주제명Physical chemistry.
Computational chemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼