대구한의대학교 향산도서관

상세정보

부가기능

Advanced Manufacturing and Nanotechnology for Non-Noble Metal-Based Oxygen Evolution Electrocatalysts

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Advanced Manufacturing and Nanotechnology for Non-Noble Metal-Based Oxygen Evolution Electrocatalysts.
개인저자Zhang, Bowei.
단체저자명Iowa State University. Mechanical Engineering.
발행사항[S.l.]: Iowa State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항114 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088317280
학위논문주기Thesis (Ph.D.)--Iowa State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Hu, Shan.
이용제한사항This item must not be sold to any third party vendors.
요약The oxygen evolution reaction (OER) plays vital roles in electrochemical energy conversion and storage applications, including water-splitting systems, fuel cells, metal-air batteries, and CO2 reduction devices, but the development of highly active and robust OER catalysts based on non-noble metals by simple methods is challenging. In this dissertation, three major strategies are proposed for developing advanced OER electrocatalysts at low cost by simple and versatile methods. In the first work, a bimetallic Ni-Fe-P nanosheet arrays were designed and fabricated as a pre-catalyst to catalyzing super high OER current densities under alkaline and neutral media. To catalyze a 10 mA/cm2 OER current density, only 156 mV and 396 mV overpotentials are needed in 1 M potassium hydroxide (KOH) and 0.1 M phosphate buffer (KPi) electrolytes, respectively. Specific investigations were carried out of the Fe/Ni ratios, electronic structures, and the Ni oxidation properties for the OER activities. The second work brought the rarely reported metal fluoride hydroxyl to the view of community and studied the role of fluoride in the electrochemical cyclic voltammetry (CV) cycling, using Ni-Fe fluoride hydroxide nanosheet arrays (NiFe-OH-F) as the representative case. After ~ 200 CV cycles, the original NiFe-OH-F surface of ~ 30 nm depth was converted into mesoporous and amorphous NiFeOx layer, which shows a 58-fold increase in OER current density compared to the 1st CV cycle, at the overpotential of 220 mV. The third work reported a facile room temperature strategy to fabricating self-supported grain boundary (GB)-rich 2D metal hydroxide networks at large scale by etching the cobalt metal-organic framework (Co-MOF, ZIF-L-Co). In the etching process, the simultaneous linker removal and metal ions hydrolysis in Co-MOFs lead to the formation of 2D ultrathin and defective Co/CoNi hydroxide networks. The obtained catalysts have been proven among the most active OER catalysts to date. These strategies create more opportunities for developing more advanced electrode materials for the electrochemical energy conversion and storage systems.
일반주제명Mechanical engineering.
Nanotechnology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼