대구한의대학교 향산도서관

상세정보

부가기능

The Unreasonable Effectiveness of Machine Learning in Neuroscience: Understanding High-dimensional Neural Representations with Realistic Synthetic Stimuli

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항The Unreasonable Effectiveness of Machine Learning in Neuroscience: Understanding High-dimensional Neural Representations with Realistic Synthetic Stimuli.
개인저자Thielk, Marvin.
단체저자명University of California, San Diego. Neurosciences.
발행사항[S.l.]: University of California, San Diego., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항86 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088330784
학위논문주기Thesis (Ph.D.)--University of California, San Diego, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Gentner, Timothy
이용제한사항This item must not be sold to any third party vendors.
요약Parametrizing complex natural stimuli is a difficult and long-standing challenge. We used a generative deep convergent network to represent and parametrize a large corpus of song from European starlings, a songbird species, into a compressed low-dimensional space. We applied psychophysical methods to probe categorical perception of natural starling song syllables, which reveal a shared categorical perceptual space. Some categorical boundaries are sensitive to the category assignment of training syllables, indicating that the consensus is context dependent and that underlying dimensions of the space are not independent. We record simultaneous firing from populations of 10's of neurons in a secondary auditory cortical region of anesthetized starlings. By estimating how fast population level neural representation change with respect to the stimuli, we produce a measure along a path in stimuli space that is shared between birds and descriptive of the psychophysically determined parameters in other birds. Consistent with this, we predict the behavioral psychometric function along one dimension by fitting the behavior for other dimensions to the population level neural activity. Thus, knowing how the animal responds in one sub-region of the parametrized space informs responses in other sub-regions. Our results implicate the importance of experience in shaping shared perceptual boundaries among complex communication signals and suggest the categorical representation of natural signals in secondary sensory cortices is distributed much more densely than predicted by traditional hierarchical object recognition models. This thesis also explores other applications of machine learning to solve neuroscience problems, in particular, the curse of dimensionality and exploring predictive coding and surprise. A model explicitly designed to predict future states allows the compression of high-dimensional time-varying signals into a lower-dimensional representation encoding exclusively predictive and predictable information and has many practical applications.
일반주제명Neurosciences.
Machine learning.
Birds.
Quantitative psychology.
Physiological psychology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼