대구한의대학교 향산도서관

상세정보

부가기능

Hydrodynamics on Smooth 2-Manifolds with Spherical Topology

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Hydrodynamics on Smooth 2-Manifolds with Spherical Topology.
개인저자Gross, Ben Jeffrey.
단체저자명University of California, Santa Barbara. Mathematics.
발행사항[S.l.]: University of California, Santa Barbara., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항190 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088314203
학위논문주기Thesis (Ph.D.)--University of California, Santa Barbara, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Atzberger, Paul J.
이용제한사항This item must not be sold to any third party vendors.
요약The investigation of soft materials poses many important challenges having implications for application areas that range from the design of better materials for use in engineering practice to gaining further insights into the functioning of biological organisms. In soft materials there is often an interplay between direct microstructure-level interactions and fluctuations in yielding observed bulk macroscopic material properties. As part of these interactions geometry and hydrodynamic interactions often play a central role. We shall investigate interfacial phenomena associated with soft materials, particularly relevant to the study of lipid bilayer membranes. We shall address the problem of how to formulate and numerically approximate continuum mechanics on 2-manifolds in the case of non-trivial geometries having spherical topology. We shall be particularly interested in developing methods for investigating the case of hydrodynamic flow responses on curved surfaces. We shall present results for an initial model assuming that we have smooth, star-shaped (radial) membrane geometry. We show how spectral methods of approximation can be developed based on use of spherical harmonics expansions, Lebedev quadrature. We use these approaches to investigate how hydrodynamic flow responses depend on the surface geometry. We find that the surface curvature can significantly effect dissipation rates and augment flow responses. We then develop more general methods for the case of any smooth geometry having spherical topology using numerical approaches based on Generalized Moving Least Squares (GMLS). We use these to further investigate hydrodynamic flows in this setting. We conclude by briefly discussing our current work to extend these numerical approaches to even more general smooth compact manifolds without the need for spherical topology.
일반주제명Applied mathematics.
Biomechanics.
Computational physics.
Fluid mechanics.
Topological manifolds.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼