대구한의대학교 향산도서관

상세정보

부가기능

Failure Mechanics of Nonlinear, Heterogeneous, Anisotropic Cardiovascular Tissues: Implications for Ascending Thoracic Aortic Aneurysms

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Failure Mechanics of Nonlinear, Heterogeneous, Anisotropic Cardiovascular Tissues: Implications for Ascending Thoracic Aortic Aneurysms.
개인저자Korenczuk, Christopher E.
단체저자명University of Minnesota. Biomedical Engineering.
발행사항[S.l.]: University of Minnesota., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항274 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085747547
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Barocas, Victor.
이용제한사항This item must not be sold to any third party vendors.
요약Characterizing the mechanical response and failure mechanisms of cardiovascular tissues is critically important, as these tissues play a vital role in the native functioning of the body. In the case of pathological events, such as aortic aneurysms or myocardial infarctions, mechanical behavior can be altered due to adverse remodeling, and thus affect the integrity of the tissue. Ascending thoracic aortic aneurysms (ATAAs) occur when the aorta enlarges beyond its normal diameter, and dilation is typically accompanied by disorganization of the underlying aortic fibrous structure. Current diagnostic methods depend solely on measuring aneurysm diameter, neglecting considerations of mechanical strength, which results in an inefficient risk assessment. To better understand the failure mechanism of ATAAs, the work presented here used a combination of experimental testing and computational modeling to characterize failure in human ATAA tissue. Experimental testing showed that ATAA tissue exhibited significantly lower mechanical strength when compared to healthy porcine tissue in multiple loading configurations. Furthermore, experimental tests highlighted the large disparity between uniaxial and shear strength in ATAA tissue, where the tissue was substantially weaker in shear loading conditions. A custom multiscale finite-element model was then used to interrogate fiber failure more closely in both experimental loading conditions, and inflation of a patient-specific ATAA geometry. Modeling results showed that fibers between the lamellar layers of the aortic wall failed significantly more than fibers within the planar layers in shear loading conditions, as well as during inflation of the patient-specific geometry. Taken together, these results suggest that intramural shear could be an important contributor to the failure or dissection of ATAAs.
일반주제명Biomedical engineering.
Biomechanics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼