대구한의대학교 향산도서관

상세정보

부가기능

Investigating Energetic Porous Silicon as a Solid Propellant Micro-Thruster

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Investigating Energetic Porous Silicon as a Solid Propellant Micro-Thruster.
개인저자Churaman, Wayne A.
단체저자명University of Maryland, College Park. Mechanical Engineering.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항151 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085558853
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Bergbreiter, Sarah.
이용제한사항This item must not be sold to any third party vendors.
요약Energetic porous silicon has emerged as a novel on-chip energetic material capable of generating thrust that can be harnessed for positioning of millimeter and micron-scale mobile platforms such as microrobots and nano-satellites. Porous silicon becomes reactive when nano-scale pores are infused with an oxidizer such as sodium perchlorate. In this work, energetic porous silicon was investigated as a means of propulsion by quantifying thrust and impulse produced during the exothermic reaction as a function of porosity. The baseline porous silicon devices were two millimeter diameter and etched to a target depth of 25 microns. As a result of changing porosity, a 7x increase in thrust performance and a 16x increase in impulse performance was demonstrated. The highest thrust and impulse values measured were 680 mN and 266 micron Newton seconds respectively from a 2 mm diameter porous silicon device with 72% porosity.Limitations and trade-offs associated with arrays of devices were presented by studying the effects of scaling porous silicon area, and characterizing thrust when arrays of porous silicon micro-thruster devices were ignited simultaneously. In addition, the effects of sympathetic ignition were evaluated to better understand how closely independent devices could be physically spaced on a 1 cm2 chip. 3D nozzles were fabricated to study confinement effects by varying nozzle throat diameter, and divergent angle. It was shown that integration of a nozzle (throat diameter of 0.75 mm and a divergent angle of theta = 10 degrees) resulted in approximately 4x increase in thrust, and 4x increase in impulse. This study highlighted enhancements to thrust and impulse generated by porous silicon, identified trade-offs associated with simultaneous activation of multiple devices on a 1 cm2 chip, and showed energetic porous silicon as a viable solid propellant for propulsion of nano-satellites and micro-robots.
일반주제명Mechanical engineering.
Engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼