대구한의대학교 향산도서관

상세정보

부가기능

Computational Design and Evaluation of a Smart Material Morphing Building Surface Tile

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Computational Design and Evaluation of a Smart Material Morphing Building Surface Tile.
개인저자Zupan, Robert Joseph, Jr.
단체저자명University of Pittsburgh. Swanson School of Engineering.
발행사항[S.l.]: University of Pittsburgh., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항100 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085740661
학위논문주기Thesis (Ph.D.)--University of Pittsburgh, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Brigham, John C.
이용제한사항This item must not be sold to any third party vendors.
요약The objective of the present work is to develop and numerically evaluate a novel concept for a shape-changing smart material building surface tile. This concept is based on a unique objective to reduce the area of the facade exposed to solar irradiance, thereby reducing thermal gains during high-temperature periods, by intelligently changing the shape of the facade surface depending upon the surface location, time of year, and other environmental factors. Moreover, a particularly high level of control, and therefore functionality is achieved for this tile concept by using a combination of localized smart material activation and mechanical actuation.First, an evaluation of the self-shading capabilities of the tile concept is presented. Of particular importance is that a morphing tile leads to an increase in shaded area on a building facade in comparison to a static tile. Next, a computational strategy for the design of the morphing tile concept that includes a numerical representation of the tile concept combined with a non-linear optimization process is presented. The computational design approach is shown to be capable of accurately determining design solutions for various target shapes while also minimizing energy usage. Furthermore, it is shown that utilization of a localized material activation (as opposed to global material activation) parameterization leads to more accurate and energy efficient solutions. Finally, the development and quantification of the capabilities of a benchtop prototype of the tile concept is presented. The results indicate that if provided the proper material activation parameters the shape-changing smart material tile can provide a significant decrease in tile area exposed to solar irradiance for various times of day. Furthermore, results indicate that the morphing frequency (i.e., monthly, daily, hourly, etc.) and the control method of an array of tiles (independent vs dependent) have a significant effect on the area of the tile exposed to solar irradiance.
일반주제명Civil engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼