대구한의대학교 향산도서관

상세정보

부가기능

Machine Learning Approaches toward Diagnosis and Biomechanical Analysis of Cardiovascular Disease

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Machine Learning Approaches toward Diagnosis and Biomechanical Analysis of Cardiovascular Disease.
개인저자Madani, Ali.
단체저자명University of California, Berkeley. Applied Science & Technology.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항105 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781085784603
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Mofrad, Mohammad.
이용제한사항This item must not be sold to any third party vendors.
요약Machine learning with deep neural networks has demonstrated high performance for high dimensionality prediction tasks across multiple domains with sufficient sample data. Cardiovascular disease is a pertinent public health issue that has the potential to be better understood and addressed via deep learning approaches. In this work, we study machine learning approaches toward diagnosing various forms of cardiovascular disease and predicting its biomechanical behavior across multiple scales.We begin by training deep learning models for an initial classification objective in echocardiography, a ubiquitous imaging modality for cardiologists. For view classification, we are able to demonstrate physician-level performance. We then expand the work from a methods and clinical application perspective. We address the high cost of annotation in medical imaging by examining data-efficient supervised and semi-supervised algorithms. In addition, we expand our prediction tasks towards the ultimate goal of automated, accurate cardiovascular disease diagnosis by predicting left ventricular hypertrophy.To understand the nature of cardiovascular disease and develop treatments, a close look at the underlying biomechanics is important. For atherosclerosis, a leading cause of morbidity and mortality, we bridge finite element methods and machine learning to predict arterial tissue stress. Likewise for cytoskeletal proteins, which are the structural building blocks of human biology and influence cardiovascular health, we develop graph neural network algorithms to predict force response and conformational dynamics in calponin homology domains. Moreover, we hope to lay the groundwork to advance the intersection of machine learning, biomechanics, and cardiovascular disease.
일반주제명Artificial intelligence.
Biomechanics.
Medical imaging.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼