대구한의대학교 향산도서관

상세정보

부가기능

Using Droplet Induced Deformations in Polymeric Functional Materials for Heat and Mass Transport Modulation

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Using Droplet Induced Deformations in Polymeric Functional Materials for Heat and Mass Transport Modulation.
개인저자Phadnis, Akshay.
단체저자명Arizona State University. Mechanical Engineering.
발행사항[S.l.]: Arizona State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항156 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781088374214
학위논문주기Thesis (Ph.D.)--Arizona State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Rykaczewski, Konrad.
이용제한사항This item must not be sold to any third party vendors.
요약Droplet-structure interactions play a pivotal role in many engineering applications as droplet-based solutions are evolving. This work explores the physical understanding of these interactions through systematic research leading to improvements in thermal management via dropwise condensation (DWC), and breathable protective wearables against chemical aerosols for better thermoregulation.In DWC, the heat transfer rate can be further increased by increasing the nucleation and by optimally 'refreshing' the surface via droplet shedding. Softening of surfaces favor the former while having an adverse effect on the latter. This optimization problem is addressed by investigating how mechanical properties of a substrate impact relevant droplet-surface interactions and DWC heat transfer rate. The results obtained by combining droplet induced surface deformation with finite element model show that softening of the substrates below a shear modulus of 500 kPa results in a significant reduction in the condensation heat transfer rate.On the other hand, interactions between droplet and polymer leading to polymer swelling can be used to develop breathable wearables for use in chemically harsh environments. Chemical aerosols are hazardous and conventional protective measures include impermeable barriers which limit the thermoregulation. To solve this, a solution is proposed consisting of a superabsorbent polymer developed to selectively absorb these chemicals and closing the pores in the fabric. Starting from understanding and modeling the droplet induced swelling in elastomers, the extent and topological characteristic of swelling is shown to depend on the relative comparison of the polymer and aerosol geometries. Then, this modeling is extended to a customized polymer, through a simplified characterization paradigm. In that, a new method is proposed to measure the swelling parameters of the polymer-solvent pair and develop a validated model for swelling. Through this study, it is shown that for this polymer, the concentration-dependent diffusion coefficient can be measured through gravimetry and Poroelastic Relaxation Indentation, simplifying the characterization effort. Finally, this model is used to design composite fabric. Specifically, using model results, the SAP geometry, base fabric design, method of composition is optimized, and the effectiveness of the composite fabric highlighted in moderate-to-high concentrations over short durations.
일반주제명Mechanical engineering.
Materials science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼