대구한의대학교 향산도서관

상세정보

부가기능

Modeling the Effects of River-Groundwater Processes on Carbon and Nutrient Dynamics

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Modeling the Effects of River-Groundwater Processes on Carbon and Nutrient Dynamics.
개인저자Li, Angang.
단체저자명Northwestern University. Civil and Environmental Engineering.
발행사항[S.l.]: Northwestern University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항273 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781085641487
학위논문주기Thesis (Ph.D.)--Northwestern University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Packman, Aaron I.
이용제한사항This item must not be sold to any third party vendors.
요약Human activities have significantly increased riverine fluxes of carbon and nutrients. River-groundwater interactions facilitate retention and transformation of carbon and nutrients, and therefore profoundly impact carbon and nutrient cycles. From water column to the streambed, there is extensive variations in hydrodynamic transport and biogeochemical reaction over space and time. However, little is known about how these variations influence carbon and nutrient dynamics at the scale of river reaches, mainly because commonly-used reach-scale models lack physically-based representation of transport and reaction processes. To bridge this gap, my dissertation aims to advance capability to model reach-scale reactive transport, and to evaluate how variations in river-groundwater processes control carbon and nutrient dynamics at reach scale. Specifically, I developed a reach-scale particle tracking model that is able to physically represent transport and reaction processes (Chapter 2). By considering vertical covariation between transport and reaction, I found that rapid flushing near the sediment-water interface controls reach-scale nitrate removal (Chapter 3), and that residence time in the bioactive region of the streambed explains reach-scale nitrate dynamics (Chapter 4). By considering reaction variability of dissolved organic matter, I found that photochemical uptake of dissolved organic matter is limited by weak vertical mixing (Chapter 5), and that microbial uptake of dissolved organic matter decreases over downstream distance due to the decreasing reactivity over time (Chapter 6). My findings highlight that variations in transport and reaction should be considered when studying carbon and nitrogen dynamics.
일반주제명Environmental engineering.
Biogeochemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼