대구한의대학교 향산도서관

상세정보

부가기능

Bayesian Nonparametric Modeling and Inference for Multiple Object Tracking

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Bayesian Nonparametric Modeling and Inference for Multiple Object Tracking.
개인저자Moraffah, Bahman.
단체저자명Arizona State University. Electrical Engineering.
발행사항[S.l.]: Arizona State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항180 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085690911
학위논문주기Thesis (Ph.D.)--Arizona State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Papandreou-Suppappola, Antonia.
이용제한사항This item must not be sold to any third party vendors.
요약The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality
일반주제명Electrical engineering.
Statistics.
Computer science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼