대구한의대학교 향산도서관

상세정보

부가기능

Investigating the Dysregulation and Therapeutic Potential of Neuroprotective Stress Response Proteins in Huntington's Disease

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Investigating the Dysregulation and Therapeutic Potential of Neuroprotective Stress Response Proteins in Huntington's Disease.
개인저자Rieders, Julianne Margaret.
단체저자명University of Pennsylvania. Cell and Molecular Biology.
발행사항[S.l.]: University of Pennsylvania., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항125 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085614795
학위논문주기Thesis (Ph.D.)--University of Pennsylvania, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Davidson, Beverly L.
이용제한사항This item must not be sold to any third party vendors.
요약Huntington's disease (HD) is a fatal, genetic neurodegenerative disease that shares many features with other common neurological disorders, including early synapse loss. In both human HD brain and murine models, apoptotic pathways are dysregulated and mammalian target of rapamycin complex 1 (mTORC1) activity is reduced. These pathways are of particular interest because they regulate cell survival and metabolism, and enhancing mTORC1 is protective in HD models. RNA binding motif protein 3 (RBM3) is a stress response protein that promotes synaptic plasticity and cell survival, and is dysregulated in Alzheimer, prion and HD models. Hippocampal overexpression of RBM3 in Alzheimer and prion murine models is neuroprotective and in the setting of prion disease is mediated by reticulon 3 (RTN3), a downstream target of RBM3. Here, I show that RBM3 and RTN3 are dysregulated in in vitro and in vivo models of HD. I find that overexpressing RBM3 isoform 1 or RTN3 in the striatum of HD mice does not rescue disease phenotypes. I also find that overexpressing RBM3 isoform 1 or 2 in the striatum does not increase RTN3 levels as expected. Further, I provide evidence that cold stress and RBM3 overexpression enhances components of the mTORC1 pathway in vitro and in vivo. My combined work indicates that the RBM3-RTN3 axis may function differently in the striatum, possibly contributing to striatal vulnerability in HD, and that while RBM3 enhances components of the mTORC1 pathway, it is insufficient to rescue HD phenotypes.
일반주제명Molecular biology.
Neurosciences.
Biomedical engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼