대구한의대학교 향산도서관

상세정보

부가기능

High Temperature Studies of Electric-field Noise in a Surface Ion Trap

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항High Temperature Studies of Electric-field Noise in a Surface Ion Trap.
개인저자Noel, Crystal.
단체저자명University of California, Berkeley. Applied Science & Technology.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항91 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085781756
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Haeffner, Hartmut.
이용제한사항This item must not be sold to any third party vendors.
요약Electric-field noise is a major limiting factor in the performance of ion traps and other quantum devices. Despite intensive research over the past decade, the nature and cause of electric field noise near surfaces is not well understood. This dissertation reports the high- temperature dependence of electric-field noise above an Al-Cu surface using a trapped 40Ca+ ion as a probe.We employ a novel setup with a surface ion trap mounted on a heater for studies of the temperature dependence of electric-field noise. To characterize the Al-Cu material, we explore the effects of heat treatment through ex situ annealing followed by inspection in a scanning electron microscope. To calibrate the temperature of the trap, we demonstrate the use of thermal imaging for monitoring the temperature of an ion trap in vacuum.The temperature and frequency dependence of electric-field noise above the surface is measured using the heating rate of a single ion in a surface-electrode Paul trap. We find that the heating rate saturates at temperatures greater than 450 K. We find that the frequency dependence shows a 1/f behavior, and has a lower frequency scaling exponent at high temperatures than at room temperature. We show that these results are a reflection of the surface-related noise by eliminating other possible sources of noise.Building on historical data for resistance fluctuations in thin films, we develop the thermally-activated fluctuator model to describe the results. We find that a broad distribution of fluctuators with energy barriers peaked around 0.5 eV accurately models both the temperature and frequency dependence of the electric-field noise measured. We present the interpretation of this model as a way to infer that the cause of electric-field noise in the trap is likely defect motion in the metal surface, connecting the problems faced in ion trapping to a large body of work in solid state physics.
일반주제명Physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼