대구한의대학교 향산도서관

상세정보

부가기능

Development and Test of a Superconducting Helicon Plasma Thruster

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Development and Test of a Superconducting Helicon Plasma Thruster.
개인저자Vitucci, John Joseph.
단체저자명University of Maryland, College Park. Aerospace Engineering.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항209 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781687914149
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Sedwick, Raymond J.
이용제한사항This item must not be sold to any third party vendors.
요약Helicon thrusters have emerged as a viable technology for station-keeping and deep-space exploration applications due to their high-efficiency plasma generation and amenability to propellants such as water vapor. A proposed design and performance analysis for the superconducting helicon thruster is presented. First, a zero-dimensional power flow analysis is performed, demonstrating an increase in the power efficiency for the superconducting helicon thruster versus the baseline helicon plasma thruster. This superconducting helicon thruster is composed of two subsystems: the superconducting magnet subsystem and the thermal management subsystem. The superconducting magnet subsystem shows that by using the combination of a solenoid and permanent magnet, a desirable magnetic field geometry for a helicon plasma can be supported. By adding a high-temperature (type-II) superconductor, the induced current in the superconductor that results from quenching the solenoid can sustain the same magnetic field geometry without the need to continuously power the electromagnet. The thermal management subsystem then maintains cryogenic temperatures in a closed-loop design for continuous operation of the thruster.A triple Langmuir probe was used to experimentally characterize the bulk plasma, and the downstream ion energies were measured with a retarding potential analyzer (RPA). Using the measured electron temperature and ion energies, it was shown that the baseline helicon thruster demonstrates slightly better performance metrics, however this comes at the cost of lower propulsive efficiencies. In instances where maximum thrust and maximum specific impulses are desired, the baseline helicon thruster would be more advantageous. If RF input power mitigation is of larger concern, the superconducting helicon thruster outperforms the baseline helicon thruster. Additionally, substantially larger ion beam energies were measured using the RPA compared to other independent studies. This anomalous acceleration mechanism has the potential to provide vast improvement to the performance of the helicon thruster.
일반주제명Aerospace engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼