대구한의대학교 향산도서관

상세정보

부가기능

Quantum Feedback for Measurement and Control

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Quantum Feedback for Measurement and Control.
개인저자Martin, Leigh.
단체저자명University of California, Berkeley. Physics.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항203 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781392609972
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Siddiqi, Irfan
이용제한사항This item must not be sold to any third party vendors.
요약The standard quantum formalism introduced at the undergraduate level treats measurement as an instantaneous collapse. In reality however, no physical process can occur over a truly infinitesimal time interval. A more subtle investigation of open quantum systems lead to the theory of continuous measurement and quantum trajectories, in which wave function collapse occurs over a finite time scale associated with an interaction. Within this formalism, it becomes possible to ask many new questions that would be trivial or even ill-defined in the context of the more basic measurement model. In this thesis, we investigate both theoretically and experimentally what fundamentally new capabilities arise when an experimental apparatus can resolve the continuous dynamics of a measurement. Theoretically, we show that when one can perform feedback operations on the timescale of the measurement process, the resulting tools provide significantly more control over entanglement generation, and in some settings can generate it optimally. Experimentally, we show that continuous measurement allows one to observe the dynamics of a system undergoing simultaneous non-commuting measurements, which provides a reinterpretation of the Heisenberg uncertainty principle. Finally, we combine the theoretical focus on quantum feedback with the experimental capabilities of superconducting circuits to implement a feedback controlled quantum amplifier. The resulting system is capable of adaptive measurement, which we use to perform the first canonical phase measurement.
일반주제명Quantum physics.
Optics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼