대구한의대학교 향산도서관

상세정보

부가기능

Advancing Nitrous Oxide as a Monopropellant Using Inductively Heated Heat-Exchangers: Theory and Experiment

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Advancing Nitrous Oxide as a Monopropellant Using Inductively Heated Heat-Exchangers: Theory and Experiment.
개인저자Saripalli, Pratik Sharma.
단체저자명University of Maryland, College Park. Aerospace Engineering.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항153 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781687913456
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Sedwick, Raymond J.
이용제한사항This item must not be sold to any third party vendors.
요약Most monopropellant thrusters used for attitude control and station keeping employ hydrazine as their propellant. In recent years, significant effort has been focused on finding an alternative due to its high toxicity. This work focuses on advancing nitrous oxide, a green monopropellant with a strong performance capability, as a replacement for current monopropellant thrusters. A large emphasis is placed on trying to address catalyst degradation experienced in most thrusters due to the high temperatures from decomposition. The approach described here eliminates the dependence for a high catalytic surface area, typically decreased from degradation, and catalysts altogether by using high temperature porous heat exchangers. A 1-D numerical compressible fluid model was created to model a typical decomposition chamber and simulate self-sustained decomposition of nitrous oxide. It implements a preheated, thermally-conductive, metal foam as the heat exchanger. An extensive parameter study was conducted to help understand thermal and fluid effects on steady-state decompositions. Using a copper metal foam, steady-state solutions simulated successful nitrous oxide decomposition, with an exit gas temperature around 1345 K. Simulations were extended to other high temperature metal foams with different thermal conductivities and melting points. Modeling flow rate conditions more representative of current monopropellant thrusters required scaling of the decomposition chamber in order to be self-sustaining. Experiments were conducted using results from the numerical simulations as guidelines. Three different heat exchangers (copper metal foam, copper discs, and stainless-steel discs), all of which have significantly less effective surface area than nominal catalysts used in thrusters, were tested for nitrous oxide decomposition. These heat exchangers were preheated to thermal decomposition temperatures using an inductive heating system and placed in a vacuum bell jar to mitigate heat loss to the environment. Testing with copper metal foam resulted in complete degradation of the heat exchanger due to oxidation from nitrous oxide decomposition. A set of copper discs, uniquely designed to maximize tortuosity of the flow, was implemented in an attempt to address the oxidation issues. While the preliminary test did confirm steady-state decomposition of nitrous oxide within the heat exchanger, further tests resulted in temperatures exceeding the melting point of copper within the discs. The last heat exchanger was a set of stainless-steel discs of the same design. Repeated tests all successfully achieved steady-state decomposition of nitrous oxide within a two-minute interval.
일반주제명Aerospace engineering.
Engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼