대구한의대학교 향산도서관

상세정보

부가기능

Advances in Deep Generative Modeling with Applications to Image Generation and Neuroscience

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Advances in Deep Generative Modeling with Applications to Image Generation and Neuroscience.
개인저자Loaiza Ganem, Gabriel.
단체저자명Columbia University. Statistics.
발행사항[S.l.]: Columbia University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항132 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687927316
학위논문주기Thesis (Ph.D.)--Columbia University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Cunningham, John P.
이용제한사항This item must not be sold to any third party vendors.
요약Deep generative modeling is an increasingly popular area of machine learning that takes advantage of recent developments in neural networks in order to estimate the distribution of observed data. In this dissertation we introduce three advances in this area. The first one, Maximum Entropy Flow Networks, allows to do maximum entropy modeling by combining normalizing flows with the augmented Lagrangian optimization method. The second one is the continuous Bernoulli, a new [0,1]-supported distribution which we introduce with the motivation of fixing the pervasive error in variational autoencoders of using a Bernoulli likelihood for non-binary data. The last one, Deep Random Splines, is a novel distribution over functions, where samples are obtained by sampling Gaussian noise and transforming it through a neural network to obtain the parameters of a spline. We apply these to model texture images, natural images and neural population data, respectively
일반주제명Statistics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼