대구한의대학교 향산도서관

상세정보

부가기능

On-chip Learning and Inference Acceleration of Sparse Representations

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항On-chip Learning and Inference Acceleration of Sparse Representations.
개인저자Kadetotad, Deepak Vinayak.
단체저자명Arizona State University. Electrical Engineering.
발행사항[S.l.]: Arizona State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항160 p.
기본자료 저록Dissertations Abstracts International 81-03B.
Dissertation Abstract International
ISBN9781085691208
학위논문주기Thesis (Ph.D.)--Arizona State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Seo, Jae-sun.
이용제한사항This item must not be sold to any third party vendors.
요약The past decade has seen a tremendous surge in running machine learning (ML) functions on mobile devices, from mere novelty applications to now indispensable features for the next generation of devices. While the mobile platform capabilities range widely, long battery life and reliability are common design concerns that are crucial to remain competitive.Consequently, state-of-the-art mobile platforms have become highly heterogeneous by combining a powerful CPUs with GPUs to accelerate the computation of deep neural networks (DNNs), which are the most common structures to perform ML operations. But traditional von Neumann architectures are not optimized for the high memory bandwidth and massively parallel computation demands required by DNNs. Hence, propelling research into non-von Neumann architectures to support the demands of DNNs.The re-imagining of computer architectures to perform efficient DNN computations requires focusing on the prohibitive demands presented by DNNs and alleviating them. The two central challenges for efficient computation are (1) large memory storage and movement due to weights of the DNN and (2) massively parallel multiplications to compute the DNN output.Introducing sparsity into the DNNs, where certain percentage of either the weights or the outputs of the DNN are zero, greatly helps with both challenges. This along with algorithm-hardware co-design to compress the DNNs is demonstrated to provide efficient solutions to greatly reduce the power consumption of hardware that compute DNNs. Additionally, exploring emerging technologies such as non-volatile memories and 3-D stacking of silicon in conjunction with algorithm-hardware co-design architectures will pave the way for the next generation of mobile devices.Towards the objectives stated above, our specific contributions include (a) an architecture based on resistive crosspoint array that can update all values stored and compute matrix vector multiplication in parallel within a single cycle, (b) a framework of training DNNs with a block-wise sparsity to drastically reduce memory storage and total number of computations required to compute the output of DNNs, (c) the exploration of hardware implementations of sparse DNNs and architectural guidelines to reduce power consumption for the implementations in monolithic 3D integrated circuits, and (d) a prototype chip in 65nm CMOS accelerator for long-short term memory networks trained with the proposed block-wise sparsity scheme.
일반주제명Electrical engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼