대구한의대학교 향산도서관

상세정보

부가기능

Non-equilibrium Two-state Switching in Mesoscale, Ferromagnetic Particles

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Non-equilibrium Two-state Switching in Mesoscale, Ferromagnetic Particles.
개인저자Delles, James Thomas.
단체저자명University of Minnesota. Physics.
발행사항[S.l.]: University of Minnesota., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항77 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088352656
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Dahlberg, Dan.
이용제한사항This item must not be sold to any third party vendors.
요약There has been much theoretical study attempting to expand upon the Arrhenius law, f=foexp(U/kT), which describes the switching rate in thermally activated, two-state systems, but few experiments to verify it. This is especially true for ferromagnetic particles. Most of the previous experiments performed attempting to study the Arrhenius law focus on the effect the Boltzmann factor, exp(U/kT), has on the switching rate since it dominates any measurement due to its exponential dependence on temperature. This has made it difficult to probe the underlying physics of the prefactor in front of the exponential. Using square, ferromagnetic particles of sizes 250 nm x 250 nm x 10 nm and 210 nm x 210 nm x 10 nm, controlling the barrier height using an applied field, and measuring the average dwell times in each individual state has allowed us to focus on these prefactors. Our measured prefactors vary by twenty five orders of magnitude, and they are smaller than those predicted by previous theories for particles of this size. They become so small as to reach unphysically short timescales. We attribute these unexpectedly small prefactors to our magnetic particles being multidomain and undergoing transitions before the particles have time to reach thermal equilibrium. We show that our particles have a higher probability of transitioning the less time they have been in a state which we attribute to the magnetization spending most of its time near the barrier allowing faster transitions.
일반주제명Condensed matter physics.
Physics.
Statistical physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼