대구한의대학교 향산도서관

상세정보

부가기능

Simulation Aspects of the Mechanics of Biomolecular Filaments: Crackling in DNA Unzipping and the Contraction of Bacteriophage Tails

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Simulation Aspects of the Mechanics of Biomolecular Filaments: Crackling in DNA Unzipping and the Contraction of Bacteriophage Tails.
개인저자Chatterjee, Anupam.
단체저자명University of California, Irvine. Chemistry - Ph.D..
발행사항[S.l.]: University of California, Irvine., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항92 p.
기본자료 저록Dissertations Abstracts International 81-06B.
Dissertation Abstract International
ISBN9781687991614
학위논문주기Thesis (Ph.D.)--University of California, Irvine, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Advisor: Andricioaei, Ioan.
이용제한사항This item must not be sold to any third party vendors.
요약Both DNA and the contractile tail sheaths of bacteriophages are examples of biofilaments, whose monomer subunits consist of nucleotides and proteins respectively. The bending and torsional deformations of tail sheaths and strand separation of ds-DNA are important phenomena essential for their biological functions. Despite the great prevalence and biomedical importance of contractile delivery systems, many fundamental details of their injection machinery and dynamics are still unknown. On a similar note, a detailed theoretical understanding of the monomer-level dynamics of DNA unzipping under constant force is also lacking in literature. In the subsequent chapters of this thesis, I will describe how computer simulations can be used to perform an in-depth study of both of the above phenomena. I would begin by describing a method which uses molecular dynamics simuations to calculate the bending and torsional stiffness constants of two biologically relevant contractile tail sheaths: bacteriophage T4 and R2-pyocin. Next, I would describe how the stiffness constants can be incorporated in a continuum dynamic model to simulate the dynamics of contractile nano-injection machineries. Finally, I would describe how MD simuations can be used to study the unzipping dynamics of a long DNA homopolymer, which would to a fascinating discovery where the 'avalanches' in the unzipping velocity time series show a power law variation in avalanche size and time similar to crackling noise in other unrelated physical systems. The studies of these phenomena are of great biological significance
일반주제명Chemistry.
Computational chemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼