대구한의대학교 향산도서관

상세정보

부가기능

Connecting the Biophysics of Active Matter to Collective Migration

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Connecting the Biophysics of Active Matter to Collective Migration.
개인저자Hamby, Alexander E.
단체저자명The University of Arizona. Molecular & Cellular Biology.
발행사항[S.l.]: The University of Arizona., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항85 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687902955
학위논문주기Thesis (Ph.D.)--The University of Arizona, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Wolgemuth, Charles W.
이용제한사항This item must not be sold to any third party vendors.
요약Dynamic, biologic systems are often driven by organized forces produced by small constituent molecules or cells. For example, the motion of a neutrophil tracking down a pathogen is powered by directed actin polymerization and myosin contraction. Likewise, the movements of single cells are marshalled together during morphogenesis to properly form an organism. It has become common to call such systems active matter. Because the internal components of an active system produce force, the system as a whole can spontaneously produce persistent motion without external driving forces. This behavior is present in sheets of epithelial cells as well as dense suspensions of swimming bacteria.The work presented here seeks to quantify and model active matter in two archetypical systems, wound healing of crawling eukaryotic cells and dense suspensions of swimming bacteria. In both of these systems, the cells that power the motions are at low Reynolds number, move in a directed fashion, and exert dipole distributed forces. Can similar physics describe the resulting dynamics? Here we address this question using experiments to probe how collective motion of these cells responds to altered or confined environments and compare the results to mathematical models that predict the dynamics of interacting, moving dipole force producers.We begin by determining how to accurately and efficiently quantify flow in these systems. The standard method for measuring cell-scale flows and/or displacements has been particle image velocimetry (PIV)
일반주제명Biophysics.
Biology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼