대구한의대학교 향산도서관

상세정보

부가기능

Untethered Microrobots of the Rolling, Jumping & Flying Kinds

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Untethered Microrobots of the Rolling, Jumping & Flying Kinds.
개인저자Bhushan, Palak.
단체저자명University of California, Berkeley. Electrical Engineering & Computer Sciences.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항98 p.
기본자료 저록Dissertations Abstracts International 81-06B.
Dissertation Abstract International
ISBN9781392487136
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Advisor: Tomlin, Claire J.
이용제한사항This item must not be sold to any third party vendors.
요약In this dissertation we study microrobot design for three modes of locomotion, namely rolling, jumping, and flying. This work covers power electronics, actuator and mechanical transmission design for these types of microrobots along with power source selection. Though interesting, we do not cover the sensors, controllers/computers, communications and useful payloads for these bots. This remains a topic for future work. Piezoelectric and electrostatic actuators generally have been the actuators of choice for researchers working in microrobotics, since conventional electromagnetic motor designs don't scale down well. Here we design an electromagnetic actuator in a way that significantly reduces its scaling down disadvantages, while still retaining its original advantages. This has enabled us to achieve untethered operation for our bots, which is one of the coveted goals for researchers working in this domain. Though untethered rolling and jumping is demonstrated, the untethered flying bot reported in this dissertation remains underpowered and doesn't take flight yet. First a micro-ratcheting mechanism is developed as a means to convert small periodic motions of actuators to continuous rotational motion. A supercapacitor, a fixed frequency H-bridge, and a low-voltage electromagnetic actuator is then used to drive this micro-ratchet to achieve untethered rolling motion for 8 seconds at 27mm/s. At 130mg mass, this is the lightest and fastest untethered rolling microrobot reported yet. The same continuous rotation mechanism developed for the rolling bot is then used to load a spring in an energy storage mechanism that can then release the stored energy rapidly and passively, via use of magnets, after the stored energy crosses a certain threshold. In this case, the continuous rotation mechanism is driven using laser-powered photovoltaic cells and untethered jumping up to heights of 8mm is demonstrated. At 75mg mass, it is the lightest untethered jumping microrobot with onboard power source. Next, a highly efficient resonant low-voltage electromagnetic actuator is developed to generate insect-like flapping wing motion. It is demonstrated to produce 90% of its weight in lift. Further light-weight and power-efficient power electronics are developed to power this actuator using laser-powered photovoltaic cells. The designed power electronics are an order of magnitude lighter and two orders of magnitude more efficient than all other power electronics units reported yet for flying microrobots. While sufficient lift for flight is not achieved, due to the actuator being underpowered because of power source overheating, untethered flapping wing motion is demonstrated. To provide inspiration to future generations of microroboticists, a fruit fly scale flapping winged robot is developed. At 0.7mg mass, even though tethered, it is the lightest and smallest bot to demonstrate flapping wing kinematics.
일반주제명Robotics.
Electrical engineering.
Mechanical engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼