대구한의대학교 향산도서관

상세정보

부가기능

Many-Body Quantum Dynamics and Non-equilibrium Phases of Matter

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Many-Body Quantum Dynamics and Non-equilibrium Phases of Matter.
개인저자Potirniche, Ionut Dragos.
단체저자명University of California, Berkeley. Physics.
발행사항[S.l.]: University of California, Berkeley., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항173 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781392634950
학위논문주기Thesis (Ph.D.)--University of California, Berkeley, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Altman, Ehud.
이용제한사항This item must not be sold to any third party vendors.
요약Isolated, many-body quantum systems, evolving under their intrinsic dynamics, exhibit a multitude of exotic phenomena and raise foundational questions about statistical mechanics. A flurry of theoretical work has been devoted to understanding how these systems reach thermal equilibrium in the absence of coupling to an external bath and, when thermalization does not occur, investigating the emergent non-equilibrium phases of matter. With the advent of synthetic quantum systems, such as ultra-cold atoms in optical lattices or trapped ions, these questions are no longer academic and can be directly studied in the laboratory. This dissertation explores the non-equilibrium phenomena that stem from the interplay between interactions, disorder, symmetry, topology, and external driving. First, we study how strong disorder, leading to many-body localization, can arrest the heating of a Floquet system and stabilize symmetry-protected topological order that does not have a static analogue. We analyze its dynamical and entanglement properties, highlight its duality to a discrete time crystal, and propose an experimental implementation in a cold-atom setting.Quenched disorder and the many-body localized state are crucial ingredients in protecting macroscopic quantum coherence. We explore the stability of many-body localization in two and higher dimensions and analyze its robustness to rare regions of weak disorder.We then study a second example of non-thermal behavior, namely integrability. We show that a class of random spin models, realizable in systems of atoms coupled to an optical cavity, gives rise to a rich dynamical phase diagram, which includes regions of integrability, classical chaos, and of a novel integrable structure whose conservation laws are reminiscent of the integrals of motion found in a many-body localized phase.The third group of disordered, non-ergodic systems we consider, spin glasses, have fascinating connections to complexity theory and the hardness of constraint satisfaction. We define a statistical ensemble that interpolates between the classical and quantum limits of such a problem and show that there exists a sharp boundary separating satisfiable and unsatisfiable phases.
일반주제명Condensed matter physics.
Statistical physics.
Theoretical physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼