자료유형 | 학위논문 |
---|---|
서명/저자사항 | Developments in the Mathematics of the A-model: Constructing Calabi-Yau Structures and Stability Conditions on Target Categories. |
개인저자 | Takeda, Alex Atsushi. |
단체저자명 | University of California, Berkeley. Physics. |
발행사항 | [S.l.]: University of California, Berkeley., 2019. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2019. |
형태사항 | 149 p. |
기본자료 저록 | Dissertations Abstracts International 81-06B. Dissertation Abstract International |
ISBN | 9781392634929 |
학위논문주기 | Thesis (Ph.D.)--University of California, Berkeley, 2019. |
일반주기 |
Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Advisor: Shende, Vivek |
이용제한사항 | This item must not be sold to any third party vendors. |
요약 | This dissertation is an exposition of the work conducted by the author in the later years of graduate school, when two main projects were completed. Both projects concern the application of sheaf-theoretic techniques to construct geometric structures on categories appearing in the mathematical description of the A-model, which are of interest to symplectic geometers and mathematicians working in mirror symmetry. This dissertation starts with an introduction to the aspects of the physics of mirror symmetry that will be needed for the exposition of the techniques and results of these two projects. The first project concerns the construction of Calabi-Yau structures on topological Fukaya categories, using the microlocal model of Nadler and others for these categories. The second project introduces and studies a similar local-to-global technique, this time used to construct Bridgeland stability conditions on Fukaya categories of marked surfaces, extending some results of Haiden, Katzarkov and Kontsevich on the relation between stability of Fukaya categories and geometry of holomorphic differentials. |
일반주제명 | Physics. Mathematics. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |