대구한의대학교 향산도서관

상세정보

부가기능

Studies on Irradiation and Electric Potential Effects toward Mineral Atomic Structure and Chemical Reactivity

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Studies on Irradiation and Electric Potential Effects toward Mineral Atomic Structure and Chemical Reactivity.
개인저자Hsiao, Yi-Hsuan.
단체저자명University of California, Los Angeles. Civil Engineering 0300.
발행사항[S.l.]: University of California, Los Angeles., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항159 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088324769
학위논문주기Thesis (Ph.D.)--University of California, Los Angeles, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Sant, Gaurav
이용제한사항This item must not be sold to any third party vendors.
요약First, we focus on the effect of neutron irradiation on the durability of silicate and carbonate mineral aggregates. Comparisons of mineral dissolution rates, as a function of pH, temperature, or surface potential, were performed at pristine or Ar+ ion irradiated state. The experimental results were coupled with MD simulations of atomic scale alteration in the crystallographic structure of the mineral and any resulting changes in physical properties that result. In detail, albite (NaAlSi3O8), a 3D framework silicate, is compared with a less polymerized silicate (i.e., almandine) and carbonates (e.g. calcite, and dolomite), which are also often present in the mineral aggregates that compose concrete. When exposed to radiation, the crystal structures of minerals have possibilities to undergo significant alterations. These alterations may perhaps enhance its chemical durability, and thus degrade the infrastructure durability. This relatively higher enhancement in the dissolution rate of silicates compared to carbonates following irradiation has significant impacts on the durability of concrete containing them up on their exposure to radiation in nuclear power plant environments. Second, the effect of electric potential to calcite dissolution kinetics is examined. The accelerated ion transportation by potential further enhances calcite dissolution, whereas the extent of induced dissolution depends on the pH, ionic strength, and temperature. Calcite dissolution rate is enhanced in acidic to neutral pH solution, but remains constant in alkaline pH. From this, it reveals that the potential-induced dissolution rates are governed by the rate-limiting step in the dissolution mechanism. In addition, by varying solution ionic strength, stronger ionic strength results in less dissolution rate enhancement due to the lower ion diffusivity. As from the examination of the temperature effect, the potential-induced dissolution rate enhancement shows that electric potential does not increase calcite dissolution rate significantly compared to temperature. In sum, it can be concluded that the mineral chemical reactivity can be enhanced by introducing external stimulus, and the magnitude of the rate enhancement depends highly on the solid atomic structure and the solvent properties. The conclusion and proposed future perspective of these works can be helpful to enhance the durability of concrete infrastructures and the relevant engineering applications.
일반주제명Civil engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼