대구한의대학교 향산도서관

상세정보

부가기능

Enhancing Prediction Efficacy with High-Dimensional Input via Structural Mixture Modeling of Local Linear Mappings

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Enhancing Prediction Efficacy with High-Dimensional Input via Structural Mixture Modeling of Local Linear Mappings.
개인저자Tu, Chun-Chen.
단체저자명University of Michigan. Statistics.
발행사항[S.l.]: University of Michigan., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항191 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085669160
학위논문주기Thesis (Ph.D.)--University of Michigan, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Forbes, Florence
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약Regression is a widely used statistical tool to discover associations between variables. Estimated relationships can be further utilized for predicting new observations. Obtaining reliable prediction outcomes is a challenging task. When building a regression model, several difficulties such as high dimensionality in predictors, non-linearity of the associations and outliers could reduce the quality of results. Furthermore, the prediction error increases if the newly acquired data is not processed carefully. In this dissertation, we aim at improving prediction performance by enhancing the model robustness at the training stage and duly handling the query data at the testing stage. We propose two methods to build robust models. One focuses on adopting a parsimonious model to limit the number of parameters and a refinement technique to enhance model robustness. We design the procedure to be carried out on parallel systems and further extend their ability to handle complex and large-scale datasets. The other method restricts the parameter space to avoid the singularity issue and takes up trimming techniques to limit the influence of outlying observations. We build both approaches by using the mixture-modeling principle to accommodate data heterogeneity without uncontrollably increasing model complexity. The proposed procedures for suitably choosing tuning parameters further enhance the ability to determine the sizes of the models according to the richness of the available data. Both methods show their ability to improve prediction performance, compared to existing approaches, in applications such as magnetic resonance vascular fingerprinting and source separation in single-channel polyphonic music, among others. To evaluate model robustness, we develop an efficient approach to generating adversarial samples, which could induce large prediction errors yet are difficult to detect visually. Finally, we propose a preprocessing system to detect and repair different kinds of abnormal testing samples for prediction efficacy, when testing samples are either corrupted or adversarially perturbed.
일반주제명Statistics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼