대구한의대학교 향산도서관

상세정보

부가기능

Distributed Model Predictive Control for Cooperative Highway Driving

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Distributed Model Predictive Control for Cooperative Highway Driving.
개인저자Liu, Peng.
단체저자명The Ohio State University. Electrical and Computer Engineering.
발행사항[S.l.]: The Ohio State University., 2017.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2017.
형태사항171 p.
기본자료 저록Dissertations Abstracts International 81-05A.
Dissertation Abstract International
ISBN9781687937223
학위논문주기Thesis (Ph.D.)--The Ohio State University, 2017.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: A.
Advisor: Ozguner, Umit.
이용제한사항This item must not be sold to any third party vendors.
요약Cooperative highway driving systems (CHDSs) consist of collaborating vehicles with automated control units and vehicle-to-vehicle communication capabilities. Such systems are proposed as an important component of intelligent transportation systems (ITS) aiming at improving energy efficiency and driving safety. CHDSs have a broad spectrum of applications, ranging from automated freight systems to highway automation to smart city transit. Modeling and control of cooperative vehicles on highways contributes importantly to CHDS development. This problem is of critical importance in developing safe and reliable controllers and establishing frameworks and criteria verifying CHDS performance. This work focuses on the cooperative control problems in developing CHDSs by investigating distributed model predictive control (DMPC) techniques. In particular, collaboration of connected and automated vehicles is first formulated into a constrained optimization problem. Then, different DMPC strategies are investigated considering features of the cooperative control problem in a CHDS. We focus on non-iterative DMPC schemes with partially parallel information exchange between subsystems. Feasibility and stability properties of the closed-loop system applying non-iterative DMPC are established taking into account the coupling of the control input with state predictions calculated at previous step. Furthermore, a non-iterative DMPC scheme implementing a partitioning procedure is proposed to reduce the conservatism of compatibility constraints while guaranteeing safe inter-vehicle distances. With the DMPC scheme controlling the connected and automated vehicles, we further investigate interactions of cooperative driving groups with surrounding human-operated vehicles in mixed traffic environments. A behavior classification framework is developed to detect driver behaviors of surrounding human-operated vehicles. With the behavior classification framework, a behavior-guided MPC controller is proposed to address disturbances caused by human-operated vehicles. Finally, the potential benefits of implementing cooperative highway driving systems is verified using microscopic traffic simulation.
일반주제명Transportation.
Robotics.
Electrical engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼