대구한의대학교 향산도서관

상세정보

부가기능

Structure of Escherichia coli H-NS and Mixed H-NS Filaments and Their Effect on Transcription Elongation by RNA Polymerase

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Structure of Escherichia coli H-NS and Mixed H-NS Filaments and Their Effect on Transcription Elongation by RNA Polymerase.
개인저자Shen, Beth Ann.
단체저자명The University of Wisconsin - Madison. Biochemistry-ALS.
발행사항[S.l.]: The University of Wisconsin - Madison., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항444 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781687904515
학위논문주기Thesis (Ph.D.)--The University of Wisconsin - Madison, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Landick, Robert.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약An assortment of bacterial chromatin proteins regulate transcription by RNA polymerase (RNAP) through multiple mechanisms. These mechanisms are incompletely characterized because of limited structural details of chromatin proteins. In my thesis work, I studied one group of chromatin proteins (H-NS, StpA, and Hha) that silence genes in many Gram-negative bacteria, including Escherichia coli, by forming filaments on AT-rich DNA. H-NS and StpA form filaments by first binding high-affinity sites via a C-terminal DNA-binding domain (DBD) and then oligomerizing along the DNA via protein-protein interactions in an N-terminal domain. H-NS can form both a bridged filament, where H-NS interacts with two segments of DNA and a linear filament, where H-NS interacts with one segment of DNA. StpA only bridges DNA. In vivo, H-NS and StpA likely exist as heterodimers. Hha interacts with H-NS and StpA, but it does not bind to DNA. The filaments that exist in vivo are likely composed of these three proteins, but the structure and function of these mixed filaments is unknown. In the first part of my thesis work, I determined if addition of StpA or Hha to an H-NS filament modified the effect of H-NS on an elongating RNAP. Bridged, but not linear, H-NS filaments were previously shown to stimulate pausing in an elongating RNAP in vitro, and I found that both StpA and Hha stimulated bridging by H-NS, which enhanced pausing by RNAP. These results suggest that bridged mixed filaments might aid gene silencing in vivo. In the second part of my thesis work, I investigated two aspects of filament structure to better understand the mechanism of gene silencing. First, using high-throughput sequencing strategies, I found that sequence-specific binding alone dictated filament formation throughout the genome. Second, I determined that the H-NS DBDs bind in the same pattern in both bridged and linear filaments using a tethered cleavage assay. These results are consistent with a model where sequence dictates location of filament formation, but conformational changes in H-NS facilitate modes of binding. Overall, my thesis work provides insight into the factors influencing filament formation and suggests important gene regulatory roles for different filament conformations.
일반주제명Biochemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼