대구한의대학교 향산도서관

상세정보

부가기능

Magnetism in Correlated Electron Systems

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Magnetism in Correlated Electron Systems.
개인저자Ye, Mengxing.
단체저자명University of Minnesota. Physics.
발행사항[S.l.]: University of Minnesota., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항164 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687984562
학위논문주기Thesis (Ph.D.)--University of Minnesota, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Chubukov, Andrey V.
이용제한사항This item must not be sold to any third party vendors.
요약This dissertation covers several aspects of magnetism in correlated electron systems. The rapid progress in understanding the origins and consequences of emergent quantum phenomena in correlated electron systems is pushed by the advances in theoretical developments, quantum material realizations and experiment probes. Magnetism has been found to be a driving force in many examples. We start with analysis of frustrated magnetic systems with localized spins. We first show the phase diagram of the triangular lattice Heisenberg $J_1$-$J_2$ model in a magnetic field, which exhibit a cascade of field induced magnetic phase transitions. We next critically examine the quantized thermal Hall measurement in Kitaev material and emphasize the importance the spin-lattice coupling in the observation of the quantization. We then study the spin-density-wave state in a compensated metal on a triangular lattice in the weak coupling limit, which develops the same ordering pattern as in the localized spin picture. While the system is not sensitive to the frustration as in a localized spin system, the magnetic field triggers a time-reversal-invariant bond order, unique in a compensated metal. Finally, we study the pseudogap physics, which describes the anomalies in the electronic properties of the system in transition between a Mott insulator with magnetic order and a normal metal by varying certain external parameter, such as temperature or the doping level away from half-filling. We analyze within the magnetic precursor scenario, and show that a coplanar magnetic order, which can be realized in the Hubbard model on a triangular lattice, introduces a knob that controls the strength of the pseudogap behavior. We find a transition between normal Fermi liquid like behavior and pseudogap behavior by varying the value of the knob.
일반주제명Physics.
Condensed matter physics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼