대구한의대학교 향산도서관

상세정보

부가기능

Fundamental Insights into Electron Transfer Reactions of Cyclometalated Ruthenium Donor-Bridge-Acceptor Compounds

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Fundamental Insights into Electron Transfer Reactions of Cyclometalated Ruthenium Donor-Bridge-Acceptor Compounds.
개인저자Piechota, Eric J.
단체저자명The University of North Carolina at Chapel Hill. Chemistry.
발행사항[S.l.]: The University of North Carolina at Chapel Hill., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항238 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088328453
학위논문주기Thesis (Ph.D.)--The University of North Carolina at Chapel Hill, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Meyer, Gerald J.
이용제한사항This item must not be sold to any third party vendors.
요약Electron transfer reactions underlie the whole of chemistry: from C-H bond formation, to molecular electronics, and in complex proteins found in nature. Accordingly, much of chemistry relies on developing methods to understand and control such reactions to permit the rational design of molecules toward answering contemporary scientific questions. A common approach is the use of model systems which allow theoretical expectations to be tested experimentally. Chapter 1 establishes the framework on which the dissertation is focused through introducing theoretical expectations and predictions for intra- and interfacial electron transfer reactions through a general mathematical and physically intuitive approach. Additionally, the distinction between non-adiabatic and adiabatic reaction mechanisms is made.This remainder of the Dissertation utilizes model systems of cyclometalated RuII donor-bridge-acceptor compounds to explore mechanisms and pathways through which electron transfer occurs. The donor-bridge-acceptor compounds are covalently linked through a synthetically modifiable aryl-thiophene bridge to an electron-rich triphenylamine unit. Chapter 2 introduces the steady-state spectroscopic, electrochemical, and spectroelectrochemical characterization of the compounds in fluid solution and anchored onto thin films of TiO2. Further, Chapter 2 quantifies the donor-acceptor electronic coupling using UV/Vis/NIR spectroscopy and identifies two pathways through which optical electron transfer can occur, either directly or indirectly.Chapters 3 and 4 highlight the experimental distinction between adiabatic and non-adiabatic electron transfer using temperature dependent kinetics to determine the rate constant and barriers associated with intramolecular electron transfer. In Chapter 3, the kinetic data indicate that the free energy for the reaction is reduced when the electronic coupling is large. Chapter 4 quantifies the free energies of activation demonstrating that the free energy of activation was independent of reaction (non-)adiabaticity.Chapters 5 and 6 investigates interfacial electron transfer from either a TiO2 surface or a core/shell SnO2/TiO2 to a molecular acceptor, either the Ru center or triphenylamine unit. Electron transfer from the interface to the triphenylamine unit was found to be bridge independent and indicates that discrete sets of orbitals constitute an electron transfer pathway discussed in Chapter 5. Chapter 6 compares activation energies for interfacial electron transfer on SnO2/TiO2 toward determination of electron transfer occurs as an activated or tunneling process.
일반주제명Physical chemistry.
Inorganic chemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼