대구한의대학교 향산도서관

상세정보

부가기능

Applications of Eikonals in Optical Design

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Applications of Eikonals in Optical Design.
개인저자Erstad, Alex.
단체저자명The University of Arizona. Optical Sciences.
발행사항[S.l.]: The University of Arizona., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항140 p.
기본자료 저록Dissertations Abstracts International 81-06A.
Dissertation Abstract International
ISBN9781392433157
학위논문주기Thesis (Ph.D.)--The University of Arizona, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-06, Section: A.
Advisor: Koshel, R. John.
이용제한사항This item must not be sold to any third party vendors.
요약The polynomial fit eikonal can characterize any complex surface by converting a ray trace of the system into a phase space transformation. This phase space transformation provides the information required to define the radiance throughout the system. The characterization of the radiance throughout the system means that the eikonal can be used in lieu of a conventional ray trace. The initial computation time needed to create the polynomial fit eikonal of a surface can be high and the eikonal representation is not as accurate as a real ray trace of a system. However, in contrast to real ray traces, the polynomial fit eikonal provides more flexibility. For example, if a full optical system has each of its surfaces converted into eikonals, then any polynomial fit eikonal surface can be exchanged with any other polynomial fit eikonal surface without needing to run cumbersome ray traces. Furthermore, once the surface is fully characterized, the eikonal does not need to be recreated as the system changes. Computation time is thus faster overall for eikonal surfaces than for real ray traces. The eikonal becomes more accurate as more terms are included. This increase in accuracy is due to higher order terms of the eikonal fitting higher order optical aberrations. This dissertation explores how various optical factors, such as curvature and refractive index, affect the accuracy of the eikonal fit. Whenever an eikonal fit is performed, it is not guaranteed to be accurate enough for the application at hand, so error reduction is an important factor when building eikonal surfaces. As the system's etendue increases, it becomes harder to fit the system to a single eikonal with reasonable error. In this case, it can be advantageous to split the system's etendue into smaller, more manageable sections to reduce the error of the eikonal. For systems with complex sources, the source can be compiled into a probability density function. This probability density function allows for the characterization of a source into a continuous function using a ray set as the basis. Rays can then be interpolated by a random weighted drawing of new rays from the probability density function and then propagated through the optical system using the eikonal.
일반주제명Optics.
Engineering.
Design.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼