대구한의대학교 향산도서관

상세정보

부가기능

An Experimental Investigation of the Relationship between Flow Turbulence and Temperature Fields in Turbulent Non-Premixed Jet Flames

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항An Experimental Investigation of the Relationship between Flow Turbulence and Temperature Fields in Turbulent Non-Premixed Jet Flames.
개인저자McManus, Thomas Andrew.
단체저자명The Ohio State University. Mechanical Engineering.
발행사항[S.l.]: The Ohio State University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항390 p.
기본자료 저록Dissertations Abstracts International 81-06B.
Dissertation Abstract International
ISBN9781392463659
학위논문주기Thesis (Ph.D.)--The Ohio State University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-06, Section: B.
Advisor: Sutton, Jeffrey.
이용제한사항This item must not be sold to any third party vendors.
요약In this dissertation, two sets of experiments were performed to improve the understanding of the relationship between flow turbulence and the temperature field in turbulent non-premixed flames. Independent high-speed temperature and velocity measurements were performed to examine flow and flame dynamics with a focus on spatio-temporal statistical analysis. Subsequently, simultaneous three-component velocity and high-resolution temperature measurements were performed to examine the interaction between fluid kinematics properties and the temperature field.Temperature field dynamics were first examined using high-repetition-rate (10 kHz) planar Rayleigh scattering in a series of turbulent non-premixed CH4/H2/N2 flames at two different Reynolds numbers, Re = 15,200 and 22,800. Additional high-speed particle image velocimetry (PIV) measurements were acquired in the same series of flames in order to facilitate a statistical comparison between the turbulent flow and a reactive scalar. Since the temperature and velocity data were resolved in both space and time, temporal auto-correlations, two-point spatial correlations, and two-point space-time correlation functions were derived as a function of spatial position and Reynolds number.The two-point space-time correlation maps for both the velocity and temperature fluctuations were used to better understand the mechanisms governing decorrelation for temperature and velocity fluctuations in turbulent non-premixed flames. Results show that the decorrelation of both temperature and velocity fluctuations is largely governed by both convection and turbulent velocity fluctuations, although reaction also appears to play a role, especially in the case of the temperature fluctuations.In order to examine the direct interaction between flow turbulence and temperature fluctuations, simultaneous velocity and temperature measurements are required. A critical part of the current dissertation research involved the development of a novel implementation of filtered Rayleigh scattering (FRS) as a thermometry approach that can be performed simultaneously with PIV in turbulent non-premixed flames. A detailed assessment of the most common Rayleigh-Brillouin scattering (RBS) spectra model, the Tenti S6 model, was performed for a number of gas species and gas mixtures at combustion-relevant temperatures. Overall, the results show that the Tenti S6 model produces accurate predictions of the RBS spectra for a wide range of combustion-relevant conditions and is suitable for use in FRS applications. Subsequently, a series of CH4/H2/Ar turbulent non-premixed flames were designed that facilitate quantitative temperature imaging using only a single FRS measurement.Simultaneous planar temperature and three-component velocity measurements were performed using FRS and stereo PIV in a series of piloted, turbulent non-premixed flames at Reynolds numbers of 10,000, 20,000, and 30,000. The joint temperature and velocity measurements were used to, among other things, generate detailed statistics characterizing their coupled relationship. Statistical results show that both the extensional and compressional principal strain rates play a significant role in generating large-magnitude thermal dissipation, with the most compressive principal strain rate playing a larger role for higher Reynolds number cases. The thermal scalar flux was calculated for both the axial and radial directions. It was observed that the gradient transport hypothesis appears to be satisfactory for describing transport in the radial direction
일반주제명Mechanical engineering.
Fluid mechanics.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼