대구한의대학교 향산도서관

상세정보

부가기능

Nanostructured Materials for Energy Storage Devices

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Nanostructured Materials for Energy Storage Devices.
개인저자Yue, Xiujun.
단체저자명University of California, San Diego. NanoEngineering.
발행사항[S.l.]: University of California, San Diego., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항127 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085572866
학위논문주기Thesis (Ph.D.)--University of California, San Diego, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Liu, Ping.
이용제한사항This item must not be sold to any third party vendors.
요약Driven by the flourishing of renewable energy sources and increasing demands of portable electronics and electric vehicles, high-performance energy storage devices are required for the applications at different scales. Benefiting from the small size, high surface area and hierarchical structures, nanostructured materials have been playing critical roles for the development of advanced energy storage devices.This dissertation will discuss the applications of nanostructured materials to resolve the unique problems for different types of energy storage devices. Chapter 2 provides a new strategy to fabricate a cation exchange membrane features a dense, crack-free tungsten oxide coating layer on Nafion that also penetrates into the Nafion's hydrophilic, ionic cluster regions. The hierarchical structural designs overcome the inherent tradeoff between conductivity and permeability of ion exchange membranes for redox flow batteries. In Chapter 3, a facile and scalable method is demonstrated to fabricate a 3D lithium metal anode with lithium nitrate, polyvinylidene difluoride, and nano-sized carbon black. The multi-functional 3D electrodes enable dendrite-free lithium metal cycling with high coulombic efficiency. In Chapter 4, a non-toxic, free-standing and flexible cathode is developed by grafting polydopamine on carbon nanotubes for aqueous zinc-ion battery. Cross-linked highly uniform active materials and the efficient conducting network overcome the long term cycling stability issue of aqueous zinc-ion batteries.
일반주제명Nanotechnology.
Nanoscience.
Energy.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼