대구한의대학교 향산도서관

상세정보

부가기능

Data-driven Analysis of Individual Thermal Comfort with Personalized Cooling

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Data-driven Analysis of Individual Thermal Comfort with Personalized Cooling.
개인저자Dalgo, Daniel Alejandro Dalgo.
단체저자명University of Maryland, College Park. Mechanical Engineering.
발행사항[S.l.]: University of Maryland, College Park., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항148 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085562584
학위논문주기Thesis (Ph.D.)--University of Maryland, College Park, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Srebric, Jelena.
이용제한사항This item is not available from ProQuest Dissertations & Theses.This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약This dissertation presents numerical and experimental results on the effects of Personal Cooling Devices (PCDs) on the energy consumption of buildings and the thermal comfort of occupants. The objective of this analysis was to quantify the tradeoffs of thermal comfort and energy savings associated with PCD technology. Furthermore, this investigation included an electrical cost analysis associated with PCDs at the building level for different cities across the United States. The results of energy and cost analyses, at the building level, indicated the potential for cooling energy and cost savings associated with shifting the electricity consumption during the peak hours to the off-peak hours of the day. The numerical analysis of human thermal comfort demonstrated the potential for PCDs to regulate human thermal comfort at warm environmental conditions. The thermal comfort level achieved in the numerical simulations were within the limits recommended by ASHRAE Standard 55. In addition, the numerical simulations permitted the evaluation of PCD performance based on thermal comfort, and the amount of sensible heat remove from the human body. The experimental work evaluated the performance of PCDs using both subjective and objective measurements of thermal comfort for 14 human subjects. The results demonstrated the ability of a PCD to change and maintain acceptable thermal comfort micro-environments for human subjects under warm conditions. Furthermore, the results showed that a PCD had measurable effects on physiological variables that control the thermoregulatory process of the human body. Specifically, variables such as skin temperature and heart rate variability in the time and frequency domain responded to the micro-environment created by the PCD. This research established a relationship between skin temperature, heart rate variability, and thermal comfort. Overall, this investigation performed a comprehensive analysis of the interaction of PCDs with: building energy consumption, human subjects, and human physiological processes
일반주제명Engineering.
Architectural engineering.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼