대구한의대학교 향산도서관

상세정보

부가기능

Selective Inhibition of Histone Deacetylases

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Selective Inhibition of Histone Deacetylases.
개인저자Porter, Nicholas John.
단체저자명University of Pennsylvania. Chemistry.
발행사항[S.l.]: University of Pennsylvania., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항174 p.
기본자료 저록Dissertations Abstracts International 81-02B.
Dissertation Abstract International
ISBN9781085592154
학위논문주기Thesis (Ph.D.)--University of Pennsylvania, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-02, Section: B.
Advisor: Christianson, David W.
이용제한사항This item must not be sold to any third party vendors.
요약Reversible lysine acetylation serves as a critical regulatory pathway for diverse cellular processes. As a result, the dysregulation of proteinaceous acetyl-L-lysine hydrolysis is connected to severe medical conditions including neurological disorders, immune dysfunction, and cancer. Inhibition of the enzymes responsible for catalyzing this reaction, histone deacetylases (HDACs), has demonstrated promising results as a route to clinical intervention in many of these diseases. Of the 18 known HDACs, 11 are metal-dependent enzymes that have similar mechanisms and each regulates the function of numerous protein substrates in vivo. This frustrates the design of small molecules targeting a single isozyme, meaning that modern FDA-approved HDAC inhibitors exhibit various side effects that make them less-than-optimal for broad clinical application.This thesis describes the characterization of HDAC-inhibitor complexes by crystallography, supported by thermodynamic and enzymological measurements, focusing on a class I enzyme, HDAC8, and a class IIb enzyme, HDAC6. Structural analysis of complexes with inhibitors exhibiting class- or isozyme-selective activity has illuminated the structural underpinnings of isozyme-selective HDAC inhibition. For instance, irreversible inhibition of class I HDACs by the epoxyketone-based inhibitor trapoxin A is due to the conformation of the epoxide group, rather than a long-presumed covalent modification in the active site. With regard to HDAC6, selective hydroxamates exhibit an unusual monodentate metal-coordination mode mediated by steric interactions at the protein surface. HDAC6 is also predisposed to be inhibited by hydroxamates over other isozymes due to a unique entropic gain associated with inhibitor binding. Finally, mercaptoacetamides serve as an alternative, non-genotoxic zinc-binding group that can exploit subtle mechanistic differences between isozymes. Taken together, these studies have constructed a framework for the design of selective HDAC inhibitors for better-targeted therapeutics.
일반주제명Chemistry.
Public health.
Medicine.
Health sciences.
Pharmaceutical sciences.
Biochemistry.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼