대구한의대학교 향산도서관

상세정보

부가기능

Identification and Characterization of Large, and Very Large Scale Motions in Numerically Simulated Atmospheric Boundary Layers

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Identification and Characterization of Large, and Very Large Scale Motions in Numerically Simulated Atmospheric Boundary Layers.
개인저자Khan, Mohammad Ahsanuzzaman.
단체저자명The University of Utah. Mechanical Engineering.
발행사항[S.l.]: The University of Utah., 2018.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2018.
형태사항96 p.
기본자료 저록Dissertations Abstracts International 81-04B.
Dissertation Abstract International
ISBN9781088342169
학위논문주기Thesis (Ph.D.)--The University of Utah, 2018.
일반주기 Source: Dissertations Abstracts International, Volume: 81-04, Section: B.
Advisor: Stoll II, James R.
이용제한사항This item must not be sold to any third party vendors.
요약Turbulence in the Atmospheric Boundary Layer (ABL) is composed of a wide range of length and time scales. To fully understand the turbulent dynamics of these motions in the ABL, it is necessary to understand the interplay between these length and time scales and their dependence on and interaction with different forcing and boundary conditions. Various studies have confirmed the existence of Very Large Scale Motions (termed as "VLSMs") in internal and external flows and statistical properties of these large-scale motions have been cataloged. However, how these structures or motions are affected throughout the ABL by realistic forcing conditions where rotation plays a significant role has yet to be explored. Also, not well understood is the interaction of VLSMs with smaller scales in regard to the turbulent kinetic energy exchange. Aside from the dynamical significance of the VLSMs, the detection and characterization of these structures are often not straightforward. In this, study a new detection methodology was developed and used for the characterization of VLSMs in the ABL and additionally, the turbulent kinetic energy exchange between large-scale and smaller scale motions was studied quantitatively. The time scale of the VLSMs along with the challenge associated with identifying the correct length scale is highlighted. It was found that any rotation in the domain makes it difficult to identify the length scales of large-scale motions from velocity component energy spectra. Rotation was also found to inhibit the spatial extent of VLSMs in the primary wind direction while expanding it in the crosswind direction. However, given this, it is somewhat surprising that rotation does not have a significant influence on the energy exchange dynamics between scales. Finally, the spatial development of the large-scale motions and related hypotheses have been revisited in the light of the obtained results.
일반주제명Fluid mechanics.
Atmospheric sciences.
Meteorology.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼