목차 일부
1부
다크 데이터는 어떻게 생겨나고
어떤 결과를 초래하는가
1장.
다크 데이터: 보이지 않는 것이 이 세계를 만든다
보이지 않는 위험, 다크 데이터
데이터를 다 갖고 있다고 생각하는군요?
아무 일도 안 생겨서 무시해버릴 때 생기는 일
다크 데이터의 위력
다크 데이터는 언제 어디에나 있다
2장.
다크 데이터...
더보기
목차 전체
1부
다크 데이터는 어떻게 생겨나고
어떤 결과를 초래하는가
1장.
다크 데이터: 보이지 않는 것이 이 세계를 만든다
보이지 않는 위험, 다크 데이터
데이터를 다 갖고 있다고 생각하는군요?
아무 일도 안 생겨서 무시해버릴 때 생기는 일
다크 데이터의 위력
다크 데이터는 언제 어디에나 있다
2장.
다크 데이터 찾아내기: 우리가 모은 것과 모으지 않은 것
데이터를 얻는 3가지 방식과 다크 데이터의 출현
데이터 잔해에서 얻는 다크 데이터
설문조사에서 생기는 다크 데이터
실험 데이터에도 다크 데이터가 끼어든다
인간적 취약점에 주의하시라
3장.
다크 데이터와 정의: 알고자 하는 것이 정확히 무엇인가?
엉뚱한 것을 측정해버렸다: 정의가 달라질 때
‘모든’ 것을 측정할 수는 없다: 심슨의 역설
질병 검진 프로그램의 취약성
과거 성과를 보고 선택할 때의 다크 데이터
4장.
의도하지 않은 다크 데이터: 말과 행동이 따로 놀 때
어디까지 정확해야 하지?
요약은 필연적으로 다크 데이터를 만든다
인간이니까 생기는 오류
측정 도구의 한계
데이터 세트를 통합할 때의 문제
5장.
전략적 다크 데이터: 게이밍, 피드백, 정보 비대칭
게이밍: 빈틈을 이용해 이득을 얻다
피드백: 피드백이 데이터를 왜곡시킬 때
정보 비대칭: 중고차 시장에서 무슨 일이 일어났나
다크 데이터가 알고리즘에 끼치는 영향
6장.
고의적 다크 데이터: 사기와 기만
사기의 세계: 핵심은 데이터 숨기기다
신원 도용과 인터넷 사기: ‘자칼의 날’
계속 진화하는 개인금융 사기
금융시장 사기와 내부자 거래
보험 사기: 고객을 속이거나 보험사를 속이거나
그 밖의 사기: 돈세탁, 다단계 사기, 횡령
7장.
다크 데이터와 과학: 발견의 본질
과학의 본질: 검증 체계로서의 과학
내가 그걸 알았더라면!: 과학자들의 흑역사
우연히 만난 다크 데이터: 과학자들의 행운
반복 실험을 통한 재현: 과학 연구의 다크 데이터
사실을 감추는 방법들
철회
출처와 신뢰성: “누가 그러던가요?”
2부
다크 데이터에 빛을 비추고 이용하는 법
8장.
다크 데이터 다루기: 빛을 비추기
희망은 있다
관측 데이터를 빠진 데이터와 연결하기
3가지 데이터 누락 메커니즘
이미 가진 데이터를 활용하는 법
생존분석 문제: 당신이 먼저 죽는다면?
대치법: 빠진 데이터를 채워넣기
반복: 최대가능도 모형과 EM 알고리즘
데이터 오류에 대처하는 방법
9장.
다크 데이터로 이득을 얻는 법: 질문을 바꿔보자
데이터를 숨기는 게 이득이 될 때
무작위 대조군 시험: 데이터를 모두에게 숨겨라
시뮬레이션: 일어났을 수도 있는 일
전략적으로 복제된 데이터
베이즈 사전확률: 가상의 데이터
사생활 보호와 기밀 유지
데이터를 다크 상태로 수집하기
10장.
다크 데이터 분류법: 미로 속으로 난 길
다크 데이터의 15가지 유형
새롭게 조명하기
더보기 닫기