자료유형 | 학위논문 |
---|---|
서명/저자사항 | In-Database Machine Learning on Reconfigurable Dataflow Accelerators. |
개인저자 | Vilim, Matthew. |
단체저자명 | Stanford University. |
발행사항 | [S.l.]: Stanford University., 2021. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2021. |
형태사항 | 120 p. |
기본자료 저록 | Dissertations Abstracts International 83-03A. Dissertation Abstract International |
ISBN | 9798544204022 |
학위논문주기 | Thesis (Ph.D.)--Stanford University, 2021. |
일반주기 |
Source: Dissertations Abstracts International, Volume: 83-03, Section: A.
Advisor: Olukotun, Oyekunle Ayinde; Hennessy, John L.; Re, Christopher. |
이용제한사항 | This item must not be sold to any third party vendors. |
일반주제명 | Software. Communication. Bandwidths. Aggregates. Flexibility. Relational data bases. Databases. Design. Energy efficiency. Spectrum allocation. Algorithms. Queries. Field programmable gate arrays. Car pools. Information science. Data analysis. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |