자료유형 | 학위논문 |
---|---|
서명/저자사항 | Geometric Problems in the Calculus of Variations. |
개인저자 | Zuniga, Andres. |
단체저자명 | Indiana University. Mathematics. |
발행사항 | [S.l.]: Indiana University., 2018. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2018. |
형태사항 | 150 p. |
기본자료 저록 | Dissertation Abstracts International 79-11B(E). Dissertation Abstract International |
ISBN | 9780438094260 |
학위논문주기 | Thesis (Ph.D.)--Indiana University, 2018. |
일반주기 |
Source: Dissertation Abstracts International, Volume: 79-11(E), Section: B.
Adviser: Peter Sternberg. |
요약 | We study existence questions and qualitative properties of solutions to variational problems related to minimization of geometric quantities, such as generalized notions of length of curves and of the area of surfaces, in a suitable sense. In th |
요약 | In the second part we prove the existence and show regularity of functions that minimize an inhomogeneous version of the total variation functional on a fixed domain and subject to Dirichlet data, in arbitrary dimensions. Assuming, among other t |
일반주제명 | Mathematics. Applied mathematics. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |