자료유형 | 학위논문 |
---|---|
서명/저자사항 | Novel Image-based Methods for Quantitative Real Time Environmental Monitoring. |
개인저자 | Du, Zijian. |
단체저자명 | Arizona State University. Electrical Engineering. |
발행사항 | [S.l.]: Arizona State University., 2019. |
발행사항 | Ann Arbor: ProQuest Dissertations & Theses, 2019. |
형태사항 | 103 p. |
기본자료 저록 | Dissertations Abstracts International 81-03B. Dissertation Abstract International |
ISBN | 9781085690669 |
학위논문주기 | Thesis (Ph.D.)--Arizona State University, 2019. |
일반주기 |
Source: Dissertations Abstracts International, Volume: 81-03, Section: B.
Advisor: Tao, Nongjian. |
이용제한사항 | This item must not be sold to any third party vendors. |
요약 | Environmental pollution has been one of the most challenging problems in modern society and more and more health issues are now linked to environmental pollution and especially, air pollution. Certain sensitive group like patients with asthma are highly influenced by the environmental air quality and knowledge of the daily air pollution exposure is of great importance for the management and prevention of asthma attack. Hence small form factor, real time, accurate, sensitive and easy to use portable devices for environmental monitoring are of great value.Three novel image-based methods for quantitative real time environmental monitoring were introduced and the sensing principle, sensor performances were evaluated through simulation and field tests. The first sensing principle uses surface plasmon resonance (SPR) image and home-made molecular sieve (MS) column to realize real time chemical separation and detection. SPR is sensitive and non-specific, which makes it a desirable optical method for sensitive biological and chemical sensing, the miniaturized MS column provides small area footprint and makes it possible for SPR to record images of the whole column area. The innovative and system level integration approach provide a new way for simultaneous chemical separation and detection. The second sensor uses scattered laser light, Complementary metal-oxide-semiconductor (CMOS) imager and image processing to realize real-time particulate matter (PM) sensing. Complex but low latency algorithm was developed to obtain real time information for PM including PM number, size and size distribution. The third sensor uses gradient based colorimetric sensor, absorbance light signal and image processing to realize real-time Ozone sensing and achieved high sensitivity and substantially longer lifetime compared to conventional colorimetric sensors. The platform provides potential for multi-analyte integration and large-scale consumer use as wearable device.The three projects provide novel, state-of-the-art and sensitive solutions for environmental and personal exposure monitoring. Moreover, the sensing platforms also provide tools for clinicians and epidemiologists to conduct large scale clinical studies on the adverse health effects of pollutants on various kinds of diseases. |
일반주제명 | Electrical engineering. Environmental health. Optics. |
언어 | 영어 |
바로가기 |
: 이 자료의 원문은 한국교육학술정보원에서 제공합니다. |