대구한의대학교 향산도서관

상세정보

부가기능

Shape Synthesis Using Structure-aware Reasoning

상세 프로파일

상세정보
자료유형학위논문
서명/저자사항Shape Synthesis Using Structure-aware Reasoning.
개인저자Sizikova, Elena.
단체저자명Princeton University. Computer Science.
발행사항[S.l.]: Princeton University., 2019.
발행사항Ann Arbor: ProQuest Dissertations & Theses, 2019.
형태사항136 p.
기본자료 저록Dissertations Abstracts International 81-05B.
Dissertation Abstract International
ISBN9781687931313
학위논문주기Thesis (Ph.D.)--Princeton University, 2019.
일반주기 Source: Dissertations Abstracts International, Volume: 81-05, Section: B.
Advisor: Funkhouser, Thomas.
이용제한사항This item must not be sold to any third party vendors.This item must not be added to any third party search indexes.
요약Shape synthesis is an important area of computer vision and graphics that concerns creation of new shapes and reconstruction from partial data. Its goal is to learn a model that can generate shapes within an object category suitable for novel shape creation, interpolation, completion, editing, and other geometric modeling applications. Existing tools learn shape properties from large collections of shapes. Although these methods have been very successful at learning how to synthesize the coarse shapes of objects in categories with highly diverse shapes, they have not always produced examples that reconstruct important structural elements of a shape. In this thesis, I describe how structure can be incorporated into the synthesis process, and how it can be used to improve generative models.First, I introduce a template-dened skeleton structure for learning a part-aware generative model in typography, where the shapes have a known structure and can be explained by a small number of templates. Next, I present a scenario of noisy archaeological wall painting (fresco) reconstruction from eroded fragments, where there is no well-dened structure and exponentially many arrangement possibilities in this case, I present a cluster evaluation function that guides the assembly process and encourages selection of good clusters. Finally, I describe a semantic landmark-based structure and how it can be used to improve a generative model of examples with extremely varied topology by means of a geometric shape-structure consistency loss. Through exploration of each type of structure, I show how reasoning with proposed structures helps synthesize more accurate and realistic shapes. I also propose a fully automatic framework for font completion. Finally, I design a genetic algorithm for wall painting reconstruction and propose an iterative outlier detection technique based on the eigenvector method.
일반주제명Computer science.
언어영어
바로가기URL : 이 자료의 원문은 한국교육학술정보원에서 제공합니다.

서평(리뷰)

  • 서평(리뷰)

태그

  • 태그

나의 태그

나의 태그 (0)

모든 이용자 태그

모든 이용자 태그 (0) 태그 목록형 보기 태그 구름형 보기
 
로그인폼